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Abstract

End-to-end verifiable voting systems attempt to establish elections where voters
receive assurance that their votes have been cast correctly. At the same time,
auditors can confirm that all ballots have been processed and tallied correctly.
End-to-end verifiability in itself has many challenges, as one always has to find
a balance between security and usability. An accessible digital election system
based on an end-to-end verifiable voting protocol can potentially restore trust in
democratic processes in society. At the same time, it enables voters to exercise
their democratic rights from remote locations. This paper describes the path of
Assembly Voting to achieve an end-to-end verifiable election protocol.
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1 Introduction

1.1 State of solution

This document presents all the technical details of the cryptographic protocol
used in the Assembly Voting election solution. It describes the second version
of the protocol of an end-to-end verifiable digital election system.

Apart from the core features of the product described in the main sections,
appendix C.1 and appendix C.2 present additional functionality required for
the Mobile Voting Project [1] in the US.

1.2 Intended audience

The document is primarily targeting cryptographers or technical, mathematical
readers. This document is intended as an argumentation for the security claims
we make about the election protocol. It contains mathematical descriptions of
all algorithms used throughout the protocol.

The adversary model in section 5 provides a non-cryptographic description of the
attack scenarios that the protocol protects against. This section could interest
readers with a more general interest in security in online election systems.

1.3 Protocol scope and objectives

Some of the core features of the election protocol include: voters vote remotely,
votes are encrypted, the system uses threshold cryptography, votes are crypto-
graphically shuffled to ensure anonymity, all essential processes are verifiable,
and auditing can be performed on all system components throughout the elec-
tion event. The system cannot always prevent fraud or unauthorized access,
but can detect it.

Multiple election types are supported, such as a referendum, candidate, multiple
choice, or ranked elections. Multiple result types are also supported. The proto-
col has support for write-in votes. Additionally, the system provides continuous
turnout statistics.

The scope of the protocol covers an entire election event, starting from election
configuration, voter authorization, vote casting, tallying, and auditing. Cryp-
tographic algorithms are crucial in terms of the security and auditing features
of the system, but many non-cryptographic processes are also necessary to con-
duct a safe election. This document describes an online election system. Users,
i.e., election officials and voters, access the system through a web browser or a
native application on an internet-connected device such as a PC, laptop, tablet,
smartphone, and so forth.

The overall objective of the document is to describe, claim and argue the
achievement of the following requirements of our protocol, which are described
in greater detail in section 2.6:
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• Mobility

• Vote & go

• Transparency

• Multiple voting rounds

• Multiple election types

• Confirming selected options

• Support correcting mistakes

• Vote overwrites

• Individual verification

• Universal verification

• Full audit

• Eligibility

• Privacy

• Anonymity

• Integrity

• Ent-to-end verifiability

• Receipt-freeness.

1.4 Document outline

Section 2 lists all the key parts of the election system, including the stakeholders,
system components, and the communication channels they use in the protocol.
Then, it presents the implications of having a public bulletin board that collects
all election data. Next, it describes the voter authentication modes that are
supported. The section ends with a list of requirements the election system
must fulfill.

Section 3 presents the cryptographic algorithms and processes that the election
entities must follow in the life cycle of an election. The section is split into
pre-election, election, and post-election processes. The section ends by listing
the election properties and explaining how they are achieved.

Section 4 presents all the auditing processes. It describes who can perform each
particular audit process, when it can happen, and what inputs are needed.

Section 5 presents the adversary model that the system is designed to handle.
It lists all trust assumptions the system relies on, the threats arising from them,
and how they are mitigated.

Appendix A lists the applied cryptographic algorithms and their mathematical
principles.

Appendix B contains a comprehensive list of all items that appear on the public
bulletin board. It defines the rules and structure for each item type.

Appendix C presents a list of additional optional features that are not considered
as the core product. Each feature is described in terms of how it modifies the
election protocol and how it impacts the election properties.
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1.5 Notation conventions

The following notation conventions are used throughout the document:

• use italic font Greek and Latin characters to display variables α, σ, x, y, z,

• use 1-based indexed arrays {a1, ..., an},

• generally, use n for the length of an array and ℓ for the height of a matrix,

• use the equal symbol to denote the structure of a variable t = (x, y, z),

• use an arrow symbol on top of the variable to denote a vector a⃗ =
{a1, ..., an},

• generally, use letters i and j in subscript as indexes ai ∈ a⃗,

• use regular font subscript to denote the context of a variable use xcnf ,

• use double-struck font style to denote sets of elements N, Z,

• use superscript to denote the size of a vector a⃗ ∈ Zn; no superscript implies
size 1,

• use subscript Nq = {0, 1, ..., q − 1} to define a subset with q elements,

• use symbol ← to denote variable assignment x← 0,

• use symbol ∈R to denote random assignment from a set x ∈R Z,

• use calligraphic font style to denote an actor in the protocol T ,

• use bold calligraphic font style to denote a set of actors V = {V1, ...,Vn},

• use san-serif font style to declare algorithms Algorithm(x, y),

• use typewriter font style to declare protocols Protocol,

• use symbol H to denote a hash function,

• in elliptic curve context, use lower case letter for scalars and upper case
for point variables q, G,

• in elliptic curve context, use notation [x]G as point multiplication

• generally, use the notation (x, Y ) to denote private-public key pairs and
mark them with subscripts for specific contexts,

• generally, assume elliptic curve domain parameters (p, a, b,G, q, h) known
and available to all algorithms and protocols.
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2 Solution entities

This section describes the different entities seen throughout this documentation
in addition to the requirements.

2.1 Stakeholders

This section describes the human actors that have a stake in an election. All
stakeholders can be grouped into four categories.

2.1.1 Election official

Election officials use the election system to configure and run an election. Elec-
tion officials own credentials that are used to access different election compo-
nents, such as the election administration service. Election officials have an
interest in the election running correctly, according to the configuration they
set up.

2.1.2 Trustee

Trustees are a particular type of election officials. In addition to the election
official role, trustees are responsible for preserving the secrecy of the voting data
throughout the election. As described in the protocol, trustees are exposed to
keys that they have to protect and keep secret. Trustees are crucial to the
election protocol, as they actively participate in the result computation.

2.1.3 Voter

All the voting data is generated by a set of predefined voters. They own creden-
tials that get them authorized to cast a digital ballot. Voters have an interest
in verifying that their vote has been processed correctly and is included in the
final tally.

2.1.4 Public auditor

Any person can be a public auditor of the election process, assuming they have
access to the proper auditing tools that will perform all the cryptographic op-
erations on behalf of the auditor. Auditors don’t have an active role in the
election process, and most of the time, the auditing will happen without the
election system noticing.

2.2 System components

This section describes all parties that are involved in the election protocol. Each
party represents a computer or simply an application that follows a particular
protocol. Each party is accessed and controlled by one of the stakeholders or
by an organization that hosts that specific application. All these parties can be
categorized into the following nine types:
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2.2.1 Election Administrator

There exists one administrator that is responsible for setting up the election
event and making updates to the configurations. The election administrator
E is a single service that all election officials use to set up an election event,
configure it and keep it updated. The election administrator service is an online
application hosted by an organization. Election officials can access the service
based on some pre-established set of credentials.

The election administrator E owns a key pair (xE , YE) used for signing the
election configuration, and is responsible for privately storing its private key xE .

2.2.2 Trustee application

There is a set of trustees, each denoted as Ti, with i ∈ {1, ..., nt}, where nt is the
total number of trustees. Each trustee uses the trustee application to perform
all cryptographic processes involved in the protocol. Trustees are responsible for
preserving the privacy and the fairness of the election during the election phase
by working together to build the election encryption key while safely storing
their shares of the decryption key.

The trustee application will compute and deliver to its trustee Ti, a key pair
(xTi , YTi) and a share of the election decryption key sxi. The trustee is re-
sponsible for privately storing the keys until a result is computed. Trustees are
responsible for destroying the keys after the election event has ended.

2.2.3 Voting application

There is a list of pre-defined eligible voters, each denoted Vi, with i ∈ {1, ..., nv},
where nv is the total number of voters. The voting application is the software
that voters use to perform all the cryptographic operations involved in the
protocol. The voting application runs locally, on the voter’s device, such as
an application on the phone or a web application in the browser. The voting
application requires an internet connection.

During the protocol, the voting application generates a key pair (xi, Yi) that
represents the cryptographic identity of voter Vi. Apart from the private key,
the voting application learns all secrets that its voter inputs, e.g., the voter’s
credentials and the plain-text vote.

2.2.4 Credentials Authority

The Credentials Authority role is relevant only in the credential-based voter
authentication mode, described in section 2.5.1.

There is a set of credentials authorities, each noted as Ci, with i ∈ {1, ..., nc},
where nc is the total number of credentials authorities. A credentials authority
is an institution consisting of both humans and software processes. Each cre-
dentials authority is responsible for generating and privately distributing voter
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credentials to the voters. It is recommended that each credentials authority
use a different communication channel for distributing credentials (e.g., e-mail,
post, SMS). Credentials Authorities must delete the voter credentials after they
have been distributed.

2.2.5 Identity Provider

The Identity Provider role is relevant only in the identity-based voter authen-
tication mode, described in section 2.5.2.

There is a set of Identity Providers Ii, with i ∈ {1, ..., ni}, where ni is the total
number of identity providers. An Identity Provider is a third-party application
responsible for authenticating a voter V during the election phase. Identity
Providers must follow the OIDC protocol.

2.2.6 Voter Authorizer

The Voter Authorizer A is a service responsible for authorizing a Voter V after
being authenticated. The voter authentication can be performed by provid-
ing the correct voter credentials or authenticating with all Identity Providers,
depending on the voter authentication mode (described in section 2.5).

The Voter AuthorizerA is responsible for preserving the election eligibility prop-
erty by preventing non-eligible voters from voting. The Voter AuthorizerA owns
a key pair (xA, YA) used for signing voter authorization and it is responsible for
privately storing its private key xA.

2.2.7 Digital Ballot Box

The Digital Ballot Box D is the central communication unit, so all other parties
push/pull data to/from it. It is a single service, publicly accessible via the
internet. The Digital Ballot Box D has a bulletin board which contains all
the public information about an election. The data which is published on the
bulletin board is thoroughly described in section 2.4.2, but it can be summarized
into the following categories:

• configuration data; This is set up during the pre-election phase (described
in section 3.2), mostly generated by the Election Administrator E .

• voting data; This is populated during the election phase (described in
section 3.3) and is generated by the voting application in collaboration
with the Digital Ballot Box D.

• result data; This is collected during the post-election phase (described in
section 3.4) and includes mixing and decryption files generated by Trustees
and enable the result to be verifiable.

The Digital Ballot Box D owns a key pair (xD, YD) used for signing data on the
bulletin board, and it is responsible for privately storing its private key xD.
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2.2.8 External Verifier

The External Verifier X is an auditing tool that voters use if they choose to
perform the process of challenging a vote cryptogram (section 3.3.4). The Ex-
ternal Verifier lets voters check that their vote has been correctly encrypted and
stored on the bulletin board. During this process, the External Verifier X will
generate a new key pair (xX , YX ) and it has to protect its private key xX .

2.2.9 Auditing tools

Two auditing tools are used by different actors to perform the auditing pro-
cess. The election officials use the administrative auditing tool to run all the
cryptographic operations involved in the administrative auditing process. This
confirms to the election officials that the election system behaved according to
their configuration.

Any public auditor uses public auditing tool to perform the public audit process.
This verifies the integrity of all public data from the bulletin board.

2.3 Communication channels

The election protocol uses three types of communication channels to transfer
data between two parties, i.e., a sender and a receiver. They are categorized
as private, authentic, or public channels. Two relevant criteria differentiate the
channel types, namely secrecy, and authenticity.

A secret communication channel implies that any outside observer cannot read
the data being transferred. The communication channel provides a way to
obfuscate the data. An authentic communication channel involves some mech-
anism that grants the receiver a confirmation that the data has been genuinely
constructed by the sender.

The following sub-sections describe what criteria are provided by each of the
communication channels. The type of channel being used during the election
protocol depends on the cryptographic environment available at that step in the
process and on the data being transferred.

2.3.1 Private channels

A private channel provides both secrecy and authenticity to the data being com-
municated. This type of channel is used when the data in transfer is confidential
to the two actors communicating but also sensitive (i.e., any tampering with the
data causes the protocol to break). A private channel prevents any outsider from
reading any part of the data or modifying it. Usually, private channels are used
where a cryptographic infrastructure has not been established yet.

The requirement of private channels is seen as a weakness as it introduces exter-
nal security dependencies to achieve specific properties. In general, the election
protocol was designed with the least need for private communication channels.
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2.3.2 Authentic channels

An authentic channel provides only the authenticity property to the data that
is being communicated. This channel type is used when the data in transfer
is not secret but cannot be tampered with. Therefore, the data must contain
proof that it genuinely comes from the sender. An authentic channel protects
against a man-in-the-middle attack but allows that man in the middle to read
all the traffic.

An example is when exchanging public keys. They are, as the name suggests,
public, while they have to represent their owner authentically.

2.3.3 Public channels

A public channel does not provide secrecy or authenticity by itself. Instead, the
data in transfer must have built-in mechanisms that ensure secrecy and authen-
ticity. Examples of such mechanisms are encryption and digital signatures.

Obviously, we recommend taking measures to secure all communication channels
in an election deployment. Though, theoretically speaking, not all of them need
to be secure for the protocol to work.

2.4 Public bulletin board

All events happening during an election are published by the digital ballot box
as items on a publicly available bulletin board. Each item from the board is
owned (or written) by a relevant actor. Each item posted on the bulletin board
describes a specific event, and it is uniquely identifiable by its hash value or
address. The address of the last item on the board represents the board hash
value at that specific point in time. All events are stored as an append only list,
meaning no event can be removed or replaced, and each new event is appended
at the end of the list. The structure of the bulletin board was inspired by [2].

The way we deviate from [2] is that to append a new item on the board, the
writer needs to include the address of any existing item from the board as part
of the new item, instead of referencing exactly the previous item. We call this
reference the parent item. Finally, the address of the new item is computed
by the digital ballot box D by hashing the content of the item (including the
reference to the parent item) concatenated with the current board hash value
(i.e., the address of the previous item) and a registration timestamp. Then,
it signs the address of the new item and delivers it to the writer as proof of
acceptance of the new item on the board. Note that it is the digital ballot box
which ensures the link of the new item to the previous item on the board.

As of this modification, each bulletin board item references two other items:

• an existing item that the writer chooses as the parent item

• and the previous item on the board.
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This modification to the bulletin board structure implies that the digital ballot
box protects the history property described in [2]. Furthermore, we introduce
a new property to the bulletin board called ancestry, which is defined by items
being related to each other meaningfully. As a result, when traversed on the
ancestry line, the structure of the bulletin board looks like a tree. However,
when traversed on the history line, the structure looks linear.

In addition, we introduce a new concept to the bulletin board structure called a
hidden verification track, used to perform the ballot checking process described
in section 3.3.4. It is called:

• hidden because it is not publicly available as part of the bulletin board.
Instead, it is available on request based on the address of a specific item.

• verification because it is used only for the ballot checking process.

• track because it spawns an extra history of events that is injected under
a specific item from the main history.

As a consequence of these modifications, any ith item from the bulletin board
consists of the following tuple bi = (mi, ci,W, σi, ti, pi, h

′
i, hi), where mi is the

item type, ci is the content of the item that describes the event,W is a reference
to the item writer, σi is the writer’s signature, pi is the address of the parent
item with pi ∈ {h1, ..., hi−1}, h′i is the address of the previous item in the history
(i.e., h′i = hi−1), ti is the registration timestamp, and hi is the item address.

Because of the two properties of the bulletin board, we define two auditing algo-
rithms. Given a list of items b = {b1, ..., bn}, an auditor runs AncestryVer(b, h0)
(algorithm 1), where h0 is the parent of the list (i.e., the parent of the first item
of the list b1) to check the ancestry of the list. Likewise, an auditor can run
HistoryVer(b, h0) (algorithm 2), where h0 is the previous item of the list to check
the history property of the list.

Algorithm 1: AncestryVer(b, h0)

Data: The ancestry of board items b = {b1, ..., bn}, with
bi = (mi, ci,W, σi, ti, pi, h

′
i, hi) and pi, h

′
i, hi ∈ B256, where i ∈ {1, ..., n}

The address of the parent of the ancestry h0 ∈ B256

for i← 1 to n by 1 do
if hi ̸= H(mi||ci||pi||h′

i||ti)
or pi ̸= hi−1 then

return 0 // ancestry is invalid

end

end
return 1 // ancestry is valid

The different kinds of items (i.e., the values that mi can have) and the events
they support are described in section 2.4.2. The rules about how items can
reference a parent item and what actors can write them are described in ap-
pendix B.
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Algorithm 2: HistoryVer(b, h0)

Data: The history of board items b = {b1, ..., bn}, with
bi = (mi, ci,W, σi, ti, pi, h

′
i, hi) and pi, h

′
i, hi ∈ B256, where i ∈ {1, ..., n}

The address of the previous item in the history h0 ∈ B256

for i← 1 to n by 1 do
if hi ̸= H(mi||ci||pi||h′

i||ti)
or h′

i ̸= hi−1 then
return 0 // history is invalid

end

end
return 1 // history is valid

To write a new item on the bulletin board, a writer must follow the protocol
described in section 2.4.1. The following actors are allowed to write on the
bulletin board:

• Election Administrator E , as the actor which writes all of the configuration
events of an election.

• Voter Authorizer A, as the actor which authorizes voters to interact with
the digital ballot box based on successful authentication.

• Voters Vi, with i ∈ {1, ..., nv}, as the actors which write all of the vote-
related events of an election.

• Digital Ballot Box D, as the actor which ultimately accepts all of the
events published on the bulletin board. In addition, D also writes all of
the auxiliary events supporting the voting process on the board.

• External Verifier X , as the actor which writes events related to the ballot
checking process. These events are written on the hidden verification track
of the bulletin board.

2.4.1 Writing on the bulletin board

This section describes the protocol that any writer must follow to write an event
on the bulletin board. The election protocol allows a predefined set of actors (E ,
A, Vi, D, X ) to write events on the bulletin board. For the sake of generalization,
protocol 1 presents the interaction between a generic writer W and the digital
ballot box D necessary for publishing the ith item on the bulletin board. We
define this interaction as (bi, ρi) ← WriteOnBoard(W,mi, ci, pi) which outputs
the new board item bi and its receipt ρi.

The publicly available information consists of: the public key of the writer YW ,
the public key of the digital ballot box YD and all of the existing items on the
bulletin board b = {b1, ...bi−1}. The writer has his private key xW , while the
digital ballot box knows its private key xD.
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Writer W Digital Ballot Box D

internal knowledge: xW , YD,
mi, ci, pi

internal knowledge: xD, YW ,
b = {b1, ..., bi−1}

σi ← Sign(xW ;mi||ci||pi)
σi, mi, ci, pi

verify that mi, ci and pi comply to the
rules according to appendix B and
SigVer(YW , σi;mi||ci||pi) then:

ti ← current timestamp
h′
i ← address of the previous item bi−1

hi ← H(mi||ci||pi||h′
i||ti)

ρi ← Sign(xD;σi||hi)
bi ← (mi, ci,W, σi, ti, pi, h

′
i, hi)

b← b ∪ {bi}
ρi, ti, h

′
i, hi

verify that hi = H(mi||ci||pi||h′
i||ti)

and SigVer(YD, ρi;σi||hi) then:

bi ← (mi, ci,W, σi, ti, pi, h
′
i, hi)

Protocol 1: WriteOnBoard(W,mi, ci, pi)

The protocol starts with the writer actively choosing the event type mi and the
content ci to be appended on the bulletin board as the ith item. All of the event
types are described in the section 2.4.2. The item content is a data structure
describing a specific event which must follow the rules described in appendix B
depending on the type of item chosen. Next, the writer chooses a pre-existing
item on the bulletin board as the parent of the new item. The parent item is
referenced by its address pi ∈ h, where h is the set of all addresses of all board
items b. The choice of parent item is made according to the rules described in
appendix B depending on the type of item chosen.

The writer signs with his private key xW the concatenation of the new item type,
the content, and the parent address. The signature σi ← Sign(xW ;mi||ci||pi)
(algorithm 25) is sent with the item type mi, content ci and parent address pi
to the digital ballot box as a request to append a new item on the board.

The digital ballot box verifies whether mi, ci, and pi are chosen according to
the rules specified in appendix B and whether the request has a valid signa-
ture. If all validations succeed, it computes the address of the new item hi
by hashing a concatenation of the type of the new item mi, its content ci, its
parent address pi, the current board hash value h′i = hi−1, and the registra-
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tion timestamp ti. It then stores the new item on the bulletin board as item
bi = (mi, ci,W, σi, ti, pi, h

′
i, hi), where W is a reference to the writer.

The digital ballot box signs with its private key xD the concatenation of the
writer’s signature σi and the address of the new item hi. The resulting signature
ρi is sent together with the registration timestamp ti, the new board hash value
hi, and the previous board hash value h′i to the writer as proof that the item
has been appended on the board.

Finally, the writer verifies that the address of the new item is computed correctly
and that the response has a valid signature.

Note that, when the protocol is performed by a specific writer, for example, the
voter Vi, the writer’s key pair (xW , YW) will be replaced by the voter’s key pair
(xi, Yi).

We define ItemVer(b, YW) (algorithm 3) as a publicly available auditing algo-
rithm to check the integrity of any bulletin board item b against its writer’s
public key YW .

Algorithm 3: ItemVer(b, YW)

Data: The board item b = (m, c,W, σ, t, p, h′, h)
The public key of the writer YW

if h = H(m||c||p||h′||t)
and SigVer(YW , σ;m||c||p) // algorithm 26

then
return 1 // item is valid

else
return 0 // item is invalid

end

2.4.2 Bulletin board event types

The bulletin board has been designed as a self-documented event log. To support
its function as such, it must contain many kinds of items that document different
events throughout the election. These include events related to the pre-election
phase for configuring the election, events related to the voting process, or events
associated with the post-election phase for publishing a result. Each event is
documented as an item on the bulletin board.

All bulletin board items are structured (mi, ci,W, σi, ti, pi, h
′
i, hi) as described

in section 2.4.1 but each item type has its own rules when it comes to:

• what data ci it contains,

• who the author W is,

• what parent pi it can have.
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The comprehensive list of item types and rules can be studied in appendix B.
The list below briefly describes all item types which can be grouped into the
following categories:

Configuration items

1. The genesis is the initial item of the bulletin board which describes some
metadata of the election. This is, basically, the item which spawns a new
bulletin board. It defines the elliptic curve domain parameters, i.e., the
tuple (p, a, b,G, q, h), the public key of the Digital Ballot Box YD, the
public key of the Election Administrator YE , and the URL of the bulletin
board. This is the only item that doesn’t have a parent reference, as it is
the very first item on the board.

2. The election configuration specifies the configuration on the election level
(e.g., election title, enabled languages). Follow-up election configuration
items act like configuration updates. Generally, all configuration items
reference the previous configuration item as a parent.

3. The contest configuration is an item defining the configuration of a contest.
It contains a unique identifier of the contest, its marking rules, question
type, result rules, and the list of candidates with their distinct labels
{m1, ...,mnc

}, where nc is the total number of candidates. Follow-up con-
test configuration items with the same contest identifier act like updates
to that contest configuration.

4. The threshold configuration is the item defining the ballot encryption key
Yenc and the threshold setup t out-of nt, where t is the amount of trustees
needed for decryption and nt is the total number of trustees. It also
specifies all of the trustee data, that includes: the set of trustees T =
{T1, ..., Tnt

}, their public keys YTi and their public polynomial coefficients
PTi,j , with i ∈ {1, ..., nt} and j ∈ {1, ..., t−1}. The threshold configuration
cannot be updated during the election phase.

5. The actor config is an item that introduces a new actor on the bulletin
board. This new actor is defined by a role and a public key. The role that
actors can have is the Voter Authorizer A, with its public key YA. New
roles might be included in the following versions of the protocol.

6. The voter authorization configuration is the item describing the way voters
must authenticate themselves to be authorized to vote. The item defines
the voter authorization mode and, if applicable (i.e. when voter authoriza-
tion mode is identity-based), the configuration of all Idenitity Providers
{I1, ..., Ini

}, where ni is the number of providers.

7. The voting round item describes what contests can be voted on at the
time. The item also defines how long the election phase lasts (i.e., the start
and end dates). Multiple voting rounds can be enabled simultaneously or
follow each other sequentially.
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Voting items

8. The voter session is the item which documents that a new voter Vi has
been authorized to cast a vote. The item contains the voter identifier
vIDi, the voter’s public key Yi, the voter’s weight, and an authentication
fingerprint used for auditing. When a voter tries to vote again (therefore
overwriting the previous vote), a new voter session item is generated con-
taining the same voter identifier vIDi. The protocol for appending this
item is described in section 3.3.1.

9. The voter encryption commitment is the item which settles the encryption
parameters chosen by the voter during the vote cryptogram generation
process (see section 3.3.3). The item consists only of a commitment cv to
the voter randomizer values. Note that this item is written by the voter,
while the public key Yi is defined in the voter session item.

10. The server encryption commitment is the item which settles the encryp-
tion parameters chosen by the Digital Ballot Box during the vote cryp-
togram generation process (see section 3.3.3). The item consists of the
commitment cd to the randomizer values of the Digital Ballot Box. This
item is generated in response to the voter encryption commitment item
being published.

11. The ballot cryptograms is the item which contains the encrypted digital
vote, i.e., the cryptogram ei.

12. The cast request is the item which documents the action of casting a
previously submitted vote.

13. The spoil request is the item which documents the decision to challenge a
previously submitted vote cryptogram, process described in section 3.3.4.

Hidden items

14. The verification track start is the initial item of the hidden verification
track, essentially spawning a verification track for each ballot cryptogram
item. The item is automatically written by the digital ballot box D after
a ballot cryptograms item has been posted.

15. The verifier item defines the external verifier X and its public key YX .

16. The voter commitment opening is the item containing the voter’s encryp-
tion parameters which are necessary for unpacking the spoiled encrypted
ballot. This data is encrypted, so only the external verifier can read it.

17. The server commitment opening is the item containing the encryption
parameters of the digital ballot box, which are necessary for unpacking
the spoiled encrypted ballot. This data is encrypted, so only the external
verifier can read it. This item is generated as a response to the voter
commitment opening item being published.
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Result items

18. The extraction intent is the item which documents the request for a result
to be computed. The request is made by the election administrator E .

19. The extraction data is the item which lists all of the ballot cryptograms
making up the initial mixed board (see details in section 3.4.1). These
cryptograms are the only ones that will count as the election result.

20. The extraction confirmation is the item which documents that the result
has been computed. It contains fingerprints of the files containing mixing
and decryption data leading to the final result. All of this data is signed
by the trustees, proving that the rightful actors have computed the result.

2.5 Voter authentication modes

During the pre-election phase, the voter authorizer service A is loaded with a
list of eligible voters V = {V1, ...,Vnv

}, where nv is the total number of voters.
To be authorized to cast a vote on the bulletin board, a user has to authenticate
to the voter authorizer as voter Vi, with i ∈ {1, ..., nv}. Once authenticated and
authorized (section 3.3.1), voter Vi can interact directly with the digital ballot
box in the voting protocol as described in section 3.3.3.

The voting system supports two mutually exclusive voter authentication modes:
credential-based and identity-based. Both names refer to the means of the
authentication taking place. One involves proving possession of some credentials
that have been pre-established before the election starts, while the other consists
in proving ownership of some identity provided by a third party. Some actors
mentioned in the authentication modes presented below are exclusive to that
mode only (i.e., credentials authority C for credential-basedmode and identity
provider I for identity-based mode).

2.5.1 Credential-based mode

For this mode, the voter authorizer configures a set of credentials authorities
C = {C1, ..., Cnc

}, where nc is the number of authorities, which are responsible for
generating and distributing the voter credentials during the pre-election phase.
Each credentials authority is supposed to use a distinct communication channel
to distribute credentials to the voters (i.e., email, SMS, or postal). Therefore,
all voters must be defined with contact information for each communication
channel supported by all credentials authorities C.

All credentials are converted into private-public key pairs (as described in sec-
tion 3.2.4) by all credentials authorities, which then return all voters’ public
keys to the voter authorizer. The voter authorizer aggregates all public keys for
each voter to form their authentication public key.

When trying to authenticate to the voter authorizer, a voter must generate a
proof of credentials, which can be achieved by aggregating all credentials received

16



from all credentials authorities. If the proof validates, the voter authorizer A
authorizes voter Vi to interact with the digital ballot box for casting a ballot.
The entire authorization process is described in section 3.3.1.

2.5.2 Identity-based mode

In this mode, the voter authorizer service lists a set of third-party identity
providers I = {I1, ..., Ini}, where ni is the number of them.

Voters have to authenticate with all identity providers I and receive identity
tokens from each of them. Then, to get authorized to cast a vote, a voter must
submit all identity tokens to the voter authorizer, which checks whether they
relate to an eligible voter identity from V . The process is further described in
section 3.3.1.

Because the voting system has to integrate into third-party identity providers,
all voters must be defined with distinct identities supported by all identity
providers I.

For auditing purposes, the voter authorizer stores all identity tokens received for
each successful authorization performed. This must be audited and validated
during the administration auditing process, as described in section 4.2.

2.6 Requirements

The requirements that the election protocol must fulfill are split into the follow-
ing three categories: functional, non-functional, and security requirements.

2.6.1 Functional Requirements

Functional requirements relate to properties of the election system that voters,
or users in general (including election officials, candidates, or auditors), can
actively choose to perform. These properties are, in some way, measurable.
The protocol has the following functional requirements:

• election types supported:

– referendum: direct vote on a proposal or issue,

– candidate election: one vote for a candidate from a predefined list,

– multiple choice: a selection of multiple vote options,

– ranked election: an ordered selection of multiple vote options,

– write-in vote: a free-form text of a maximum size,

• verification mechanisms for voters to check that the encrypted ballot con-
tains what they expect,

• possibility to confirm selected options after voting by an overview of the
complete ballot,
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• possibility to correct mistakes before submitting an encrypted ballot,

• ability for overwrite your vote, i.e., a voter can vote multiple times while
only the latest submitted vote will be counted in the final tally,

• ability to check the status of your ballot after submission,

• public auditability of the election process throughout the election period.

2.6.2 Non-functional Requirements

Non-functional requirements describe properties of the election system that im-
pact the user experience while interacting with the system.

Mobility is the property that enables voters to use any internet-connected
device (PC, laptop, tablet, smartphone) to connect to the election system. They
do not need to vote from a particular location (e.g., a polling station). Instead,
they can participate in the voting process from any place they consider private
and with an internet connection.

Vote & go entails that voters are only required to be present during the
voting phase. Results can be computed without the presence of voters.

Transparency implies that election data is available for auditing through a
public bulletin board.

Multiple voting rounds enable election officials to reuse most of the election
configuration for multiple sub-elections where the same set of voters must vote
on different ballots. A separate election result is computed for each voting
round.

2.6.3 Security Requirements

Security requirements describe properties of the election system that contribute
to the quality and reliability of an election result. This section briefly describes
the properties, while the explanation of how these properties are achieved is
presented in section 3.5.

Eligibility property is defined as the fact that only a limited number of pre-
defined voters can cast a valid vote.

Privacy property implies that no entity can read a partial result or any votes
before the intended time. This is to prevent influencing the subsequent voters
throughout the election period. Voters’ initial intentions may change if the
current results were publicized.
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Anonymity property implies that no single entity can determine how a par-
ticular voter voted.

Integrity of voting data is the property that implies detection mechanisms
of whether any votes recorded on the bulletin board during the election phase
have been modified or deleted.

Verifiability property describes that all steps of the election protocol are
verifiable by following some auditing process.

Receipt-freeness property is defined as the fact that voters cannot prove to
a third party how they voted after they submitted the encrypted ballot.
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3 Election protocol

3.1 Overview

This section briefly describes the entire election protocol. A full election process
is split into three main phases:

• the pre-election phase, where the election context is created and all com-
ponents are configured, as presented in section 3.2,

• the election phase, where the actual votes are being generated and stored,
as presented in section 3.3,

• and the post-election phase, where all collected votes are being processed
into an election result, as described in section 3.4.

All of these phases internally consist of different processes that are triggered
by specific stakeholders. A map of all processes is presented in figure 2, where
the leftmost label lists the process name, the circled label defines the actor that
triggers the process (EO for election official, T for trustee, V for voter and PA for
public auditor), and the following empty circles indicate the system components
that are involved in the process.

Specifically, an entire election process is started by an election official initializing
a digital ballot box, as presented in section 3.2.1, and setting up the election
configuration as in sections 3.2.2, 3.2.3 and 3.2.6. Then, the trustees perform
the threshold ceremony, as described in section 3.2.5. Optionally, at the end
of the pre-election phase, the voter credentials distribution process occurs, as
presented in section 3.2.4.

During the election phase, voters can get authorized to cast a vote as pre-
sented in section 3.3.1 and then perform the voting process as described in
sections 3.3.2, 3.3.3 and 3.3.5. Optionally, voters can perform some verification
mechanisms on their encrypted ballot, as described in sections 3.3.4 and 3.3.5.
More about voter-specific auditing is presented in section 4.1.

In the final, post-election phase, election officials run an administration audit-
ing process to check that the election system behaved correctly, as described
in section 4.2. Then, trustees compute the election result, as presented in sec-
tions 3.4.1 to 3.4.3. The result is published as in section 3.4.4, so any auditor
can run a public auditing process on the entire election process, as presented in
section 4.3.
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3.2 Pre-election phase

During the pre-election phase, human election officials use the Election Admin-
istrator service to configure and set up a new election. This consists of the
following steps:

• initiate a new bulletin board as described in section 3.2.1,

• define the election level configuration, including election title, contest ti-
tles, candidates, and other services required in the election, as described
in section 3.2.2,

• define eligible voters and configure the voter authorization mode as de-
scribed in section 3.2.3,

• facilitate the threshold ceremony as described in section 3.2.5,

• configure the election phase by setting up voting rounds as in section 3.2.6.

3.2.1 Digital Ballot Box initialization

An election official selects the elliptic curve domain parameters (p, a, b,G, q, h)
for a predefined set, listed in appendix A.2.3. Based on these parameters, the
election administrator service generates a new key pair (xE , YE) ← KeyGen()
(algorithm 17), where xE is its signing key and will be kept secret throughout
the election, while YE is its public signature verification key. Next, the election
administrator requests the digital ballot box to initialize a new bulletin board
with the initial election meta-data configuration (including the elliptic curve
domain parameters and the public key YE).

On this request, the digital ballot box generates a new key pair (xD, YD) ←
KeyGen() (algorithm 17), where xD is its signing key and will be kept secret
throughout the election period, and YD is its public signature verification key.
From this, it spawns a new bulletin board by generating a genesis item as the
first item of the board (b1, ρ1) ← WriteOnBoard(D,m1, c1, p1) (protocol 1),
where m1 = ”genesis”, p1 = ∅, and the content c1 is constructed according
to the rules specified in appendix B. Next, the digital ballot box returns to
the election administrator with the freshly created genesis item b1. From this
point on, the election administrator service and the digital ballot box represent
identities E and D respectively on the bulletin board.

3.2.2 Election configuration

Once a bulletin board exists, the election administrator E can write all of the
configuration items on it by following WriteOnBoard(E ,mi, ci, pi) (protocol 1).
All items are computed and published one by one, based on the rules defined in
appendix B. All items are signed with the election administrator signing key xE
and they reference the address of the previous configuration item (pi = hi−1)
as a parent. The items which make up the initial configuration are:
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• the election configuration item,

• contest configuration items for each contest and

• actor configuration items for all other service which need to interact with
the digital ballot box, e.g., the voter authorizer.

For each contest, the election official has to configure a contest identifier, mark-
ing rules, result rules, and a list of candidates represented by {m1, ...,mnc

},
where nc is the number of candidates.

For each actor, the Election Administrator service interacts with the other
services, e.g., the voter authorizer, to generate its own key pair (xA, YA) ←
KeyGen() (algorithm 17). Value xA is the voter authorizer signing key and will
be kept secret throughout the election period, while YA is its public signature
verification key and is shared with the election administrator. Next, the election
administrator assigns the role of voter authorizer to the public key YA. Once
the actor configuration item containing the public key YA is published on the
bulletin board, the voter authorizer becomes identity A and can interact with
the digital ballot box.

3.2.3 Voter authorization configuration

An election official interacts with the Voter Authorizer service to configure the
voter authentication mode, which can be either credential-based or identity-
based. To define the list of eligible voters, the election official performs some
extra configuration, which depends on the chosen voter authentication mode.

When credential-based voter authentication mode is enabled, the election
official establishes a set of credentials authorities C = {C1, ..., Cnc

} used for
distributing voter credentials, with each authority Ci ∈ C needing to use a
specific communication channel to distribute voter credentials, such as via e-
mail, post or SMS. Then the election official provides the list of eligible voters
V = {V1, ...,Vnv

}, each defined by a unique identifier and a list of contact
information for all communication channel used by the credentials authorities.

Next, the credentials authorities and the voter authorizer perform the voter
credential distribution process (describe in section 3.2.4) and set up the public
authentication key of each voter.

Finally, the voter authorizer writes the voter authorization configuration item on
the bulletin board by performing WriteOnBoard(A,mi, ci, pi) (protocol 1) based
on the rules defined in appendix B. The item is signed by the voter authorizer
signing key xA and it contains the voter authentication mode.

When identity-based voter authentication mode is enabled, the election official
selects a list of third-party identity providers I = {I1, ..., Ini} used for authen-
ticating voters during the election phase. The election official then provides the
list of eligible voters V = {V1, ...,Vnv

}, each defined by a unique identifier and
a list of identities supported by all of the identity providers.
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Finally, the voter authorizer writes the voter authorization configuration item on
the bulletin board by following WriteOnBoard(A,mi, ci, pi) (protocol 1) based
on the rules defined in appendix B. The item is signed by the voter authorizer
signing key xA and it contains the voter authentication mode and the list of
identity providers Ij , with j ∈ {1, ..., ni}, each defined by their public key YIj .

3.2.4 Voter credential distribution process

This process is only applicable if the vote authentication mode is credential-
based, as described in section 2.5.1.

Each credentials authority Cj ∈ C, receives a list of voters consisting of contact
details for each voter {a1, ..., anv

} in the form of e-mail addresses, postal ad-
dresses or phone numbers, depending on the credentials authority’s communica-
tion channel. The credentials authority generates random credentials ci,j ∈R Bℓ
for each voter, with i ∈ {1, ..., nv}. The credentials authority distributes the
credential ci,j to a specific voter Vi (using that voter’s contact details ai) and
appends the corresponding public authentication key Yauth;i,j in the list of voters
next to Vi, where (xauth;i,j , Yauth;i,j)← Pass2Key(ci,j) (algorithm 35).

Credentials can be generated as a random string of alphanumeric characters,
bound by the level of entropy ℓ. It is recommended that credentials are based
on at least 80 bits of entropy, i.e., ℓ ≥ 80. That corresponds to a 14-character
alphanumeric code that has to be sent to the voter and inputted in the voting
application.

All credentials authorities Cj ∈ C return the lists with voters’ contact details
and public authentication keys (ai, Yauth;i,j) to the voter authorizer. The voter
authorizer then combines all keys received from all credentials authorities for
each voter to form the voter’s public authentication key Yauth;i =

∑nc

j=1 Yauth;i,j .

For authenticating to the voter authorizer, the voter Vi ∈ V must input all
credentials {ci,1, ..., ci,nc} received from all credentials authorities in the voting
application. The application will thereafter derive keys from each credential
(xauth;i,j , Yauth;i,j) ← Pass2Key(ci,j) (algorithm 35) and aggregate all of them
to form the voter’s private authentication key xauth;i =

∑nc

j=1 xauth;i,j (mod q).
The private authentication key is used to compute a proof of credentials PKauth,
as described in section 3.3.1, which is used to authenticate the voter.

3.2.5 Threshold ceremony

An election official interacts with the election administrator service to define the
lists of trustees T = {T1, ..., Tnt

}. Then, the election administrator coordinates
the threshold ceremony during which all trustees Ti ∈ T participate in the
protocol from figure 12 described in appendix A.5.3 to generate the election
encryption key Yenc and each trustee’s share of the decryption key sxi. The
election official sets the threshold value t, such that any t out of the nt trustees
can perform the decryption of ballots.
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At the end of the ceremony, the election administrator writes the threshold con-
figuration item on the bulletin board by following WriteOnBoard(E ,mi, ci, pi)
(protocol 1) based on the rules defined in appendix B. This item contains:

• election encryption key Yenc,

• threshold setup t-out-of-nt,

• public keys of each trustee YTi , with i ∈ {1, ..., nt},

• public polynomial coefficients of each trustee PTi,j , with j ∈ {1, ..., t− 1}.

3.2.6 Voting rounds

An election official interacts with the election administrator service to define
when the election phase is taking place, namely by setting a start and end date.
Then, the election administrator E writes a voting round item on the bulletin
board by following WriteOnBoard(E ,mi, ci, pi) (protocol 1) based on the rules
from appendix B, specifying the start and end date, and the enabled contests.

For a regular election, a single voting round is sufficient. Still, multiple voting
rounds can be configured to start at different times, and various contests could
be enabled in each voting round.

3.3 Election phase

The election phase lasts from the start date until the end date of a voting round.
During this time, any voter Vi ∈ V can cast a valid digital ballot by performing
the following steps:

• obtain a list with all configuration items of the bulletin board αcnf from
the digital ballot box,

• authenticate and become authorized to cast a digital ballot on the bulletin
board as described in section 3.3.1,

• select and encode vote choices as described in section 3.3.2,

• encrypt the ballot following the process from section 3.3.3,

• optionally, perform an audit/verification on the encrypted ballot as de-
scribed in section 3.3.4 and

• finally, cast the encrypted ballot and obtain a vote confirmation receipt
as in section 3.3.5.

3.3.1 Voter authorization procedure

A voter Vi is considered authorized to cast a digital ballot when he/she owns a
secret signing key xi which corresponds to an eligible signature verification key
Yi from the bulletin board. This is achieved differently depending on the voter
authentication mode.
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When credential-based voter authentication mode
Each voter Vi has to follow the protocol from figure 3 to get authorized to cast a
digital ballot on the bulletin board. Specifically, the voter must prove possession
of credentials associated with the voter’s authentication public key Yauth;i.

Voter inputs the credentials received from each credentials authority {c1, ..., cnc
}

into the voting application. All credentials get converted into the voter’s au-
thentication key pair (xauth;i, Yauth;i), where the private key xauth;i is computed
by adding together all keys derived from each credential cj (by using algo-
rithm 35 Pass2Key(cj)), with j ∈ {1, ..., nc}. The public key is computed by
Yauth;i ← [xauth;i]G. Based on the private key, the voting application computes
PKauth ← DLProve(xauth;i, {G}) (algorithm 15) as the proof of credentials.

Then, the voting application generates a new key pair (xi, Yi) to be used as the
signing/signature verification keys in the upcoming voter session. The voting
application sends the proof PKauth and the public key Yi to the voter authorizer
proving possession of credentials of voter Vi. The voter authorizer checks that
the proof is valid and whether it was generated by an eligible voter from V .

If the authentication succeeds, the voter authorizer service will authorize the
use of public key Yi for the voter Vi by interacting with the digital ballot box
D in WriteOnBoard(A,mvs, cvs, pvs) (protocol 1) to write a voter session item
bvs as the next item on the bulletin board, according to the rules specified in
appendix B, where mvs = ”voter session”, the parent pvs is the address of the
latest configuration item and the content cvs consists of the voter identifier, the
public key Yi, and a digest of the proof PKauth.

The voter authorizer returns to the voter with the voter session item bvs as
received from the digital ballot box. The voting application validates the item
according to protocol 1. Additionally, it checks that the item is consistent
according to the configuration ancestry αcnf , i.e., AncestryVer({bvs}, hcnf) (algo-
rithm 1), where hcnf is the address of the last item in αcnf . From this point on,
the voter can interact directly with the digital ballot box as the identity Vi.

The voter authorizer service stores a link between the voter identity Vi and
the proof of credentials PKauth for the administration auditing process in the
post-election phase as described in section 4.2.

When identity-based voter athentication mode
Each voter Vi must follow the protocol from figure 4 to obtain authorization to
cast a digital ballot on the bulletin board. Specifically, the voter must authen-
ticate and receive identity tokens σid,j from all of the identity providers Ij ∈ I
which the voter authorizer has configured in the pre-election phase.

The voting application then generates a key pair (xi, Yi) ← KeyGen() (algo-
rithm 17) and forwards all identity tokens {σid,1, ..., σid,ni} and the public key
Yi to the voter authorizer service A proving the identity of the voter Vi.
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Voter Vi Voter Authorizer A
internal knowledge: YA, YD,

{c1, ..., cnc}, αcnf

internal knowledge: xA, V,
{Yauth;1, ..., Yauth;nv}, αcnf

(xauth;i,j , Yauth;i,j)← Pass2Key(cj), with j ∈ {1, ..., nc}
xauth;i ←

∑nc
j=1 xauth;i,j (mod q)

Yauth;i ←
∑nc
j=1 Yauth;i,j = [xauth;i]G

PKauth ← DLProve(xauth;i, {G})
(xi, Yi)← KeyGen()

Yauth;i, PKauth, Yi

verify that Yauth;i ∈ {Yauth;1, ..., Yauth;nv} and
DLVer(PKauth, {G}, {Yauth;i}) then:

mvs ← ”voter session”, cvs ← (Vi, Yi,H(PKauth))
pvs ← the address of the latest item from αcnf

A and D perform protocol 1 to write bvs as the next

item of the bulletin board

(bvs, ρvs)← WriteOnBoard(A,mvs, cvs, pvs)

internally store tuple (Vi, PKauth) for auditing
bvs

hcnf ← the address of the latest item in αcnf

cvs ← the content of bvs

verify AncestryVer({bvs}, hcnf), ItemVer(bvs, YA)
and that cvs = (Vi, Yi,H(PKauth))

Figure 3: Credential-based voter authentication protocol

If the voter authorizer service can validate all identity tokens and the voter is
eligible, i.e., Vi ∈ V , it will authorize the use of the public key Yi for the voter
Vi. This is done by the voter authorizer A interacting with the digital ballot
box D in the protocol 1 WriteOnBoard(A,mvs, cvs, pvs) to write a voter session
item bvs on the bulletin board as the next item. This occurs according to the
rules specified in appendix B, where mvs = ”voter session”, the parent pvs is
the address of the latest configuration item, and the content cvs consists of the
voter identifier, the public key Yi, and the authentication fingerprint computed
by hashing all identity tokens received from the voter.

The voter authorizer returns the voter session item bvs to the voter as received
from the digital ballot box. The voting application checks the item according
to the validations of protocol 1. Additionally, it verifies that the item is consis-
tent according to the configuration ancestry αcnf , i.e., AncestryVer({bvs}, hcnf)
(algorithm 1), where hcnf is the address of the last item in αcnf . From this point
on, the voter can interact directly with the digital ballot box as the identity Vi.
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Voter Vi Voter Authorizer A Identity Provider Ij
internal knowledge: YA, YD,
{YI1 , ..., YIni

}, αcnf

internal knowledge: xA, V,
{YI1 , ..., YIni

}, αcnf

internal knowledge: xIj

authenticate as Vi

σid,j ← Sign(xIj ;Vi)σid,j

verify that SigVer(YIj , σid,j ;Vi)

when successfully authenticated with all Ij ∈ I and received {σid,1, ..., σid,ni
}

(xi, Yi)← KeyGen() Yi, {σid,1, ..., σid,ni}

verify that Vi ∈ V and SigVer(YIj , σid,j ;Vi), with j ∈ {1, ..., ni} then:

cvs ← (Vi, Yi,H(σid,1||...||σid,ni))
mvs ← ”voter session”, pvs ← the address of the latest item from αcnf

A and D perform protocol 1 to write bvs as the next item of the bulletin board

(bvs, ρvs)← WriteOnBoard(A,mvs, cvs, pvs)

internally store the tuple for auditing: (Vi, {σid,1, ..., σid,ni})bvs

hcnf ← the address of the latest item in αcnf

cvs ← the content of bvs

verify AncestryVer({bvs}, hcnf), ItemVer(bvs, YA)
and that cvs = (Vi, Yi,H(σid,1||...||σid,ni))

Figure 4: Identity-based voter authentication protocol
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The voter authorizer service stores a link between the voter identity Vi and
all related identity tokens for the administrative auditing process in the post-
election phase, as described in section 4.2. This link is stored privately by
the voter authorizer service since the identity tokens likely contain personal
information that must not be disclosed on the public bulletin board.

3.3.2 Mapping vote options on the Elliptic Curve

An expressed vote (i.e., a vote in plain text) must be able to be converted deter-
ministically into elliptic curve points to be used in our cryptographic protocols.
Additionally, a series of points from the elliptic curve must be able to be con-
verted back into a plain-text vote if said points have been constructed from a
plain-text vote. Depending on the election type (referendum, simple election,
multiple choice election, STV election), the plain text vote can be constructed
in different ways, such as a simple string, an array of integers, or even a complex
data structure. Regardless of the vote encoding rules, the plain-text vote has a
byte representation b⃗ ∈ B∗.

Next, b⃗ is converted into elliptic curve points V⃗ ← EncodeVote(⃗b) (algorithm 4),
which can be used in the encryption mechanism described in section 3.3.3. Thus,
the set of points V⃗ represents the voter’s choices in cryptographic form.

Recovering the byte array b⃗ from V⃗ can be done by b⃗← DecodeVote(V⃗ ) (algo-

rithm 5). Depending on the vote encoding rules, the byte array b⃗ can further
be interpreted as a plain-text vote.

Algorithm 4: EncodeVote(⃗b)

Data: The plain-text vote b⃗ = {b1, ..., bn} ∈ Bn
m← ByteLengthOf(p) // algorithm 14

ℓ← ⌈n/m⌉
for i← 0 to ℓ− 1 by 1 do

Vi ← Bytes2Point({bi+1, ..., bi+m}) // algorithm 10

end

V⃗ ← {V1, ..., Vℓ}
return V⃗ // V⃗ ∈ P∗

Algorithm 5: DecodeVote(V⃗ )

Data: The list of points V⃗ = {V1, ..., Vℓ} ∈ Pℓ

b⃗← {}
for i← 1 to ℓ by 1 do

b⃗← b⃗ ∪ Point2Bytes(Vi) // algorithm 11

end

return b⃗ // b⃗ ∈ B∗
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3.3.3 Vote cryptogram generation process

During the vote cryptogram generation process, the voting application collab-
orates with the digital ballot box D for generating cryptograms e⃗ that repre-
sent the encryption of the vote V⃗ . This process results in neither the voter
Vi nor the digital ballot box D having the whole randomizer value r used in
the generation process of each cryptogram e (recall from appendix A.5.1 that
e = Enc(Yenc, V ; r)). That is achieved by the voter and the digital ballot box
building up the randomizer, while neither of them knowing its entire value. It is
important for the voters not to know this value not to be able to produce cryp-
tographic evidence of the way they voted (as in appendix A.5.4), thus achieving
receipt freeness. The entire process consists of committing to the encryption
randomizers (figure 5) and submitting the encrypted ballot (figure 6).

The generation process begins with the voting application generating its en-
cryption randomizers r⃗v = {rv;1, ..., rv;ℓ} ∈R Zℓq and computing a commitment
to them cv ← Com(r⃗v, sv) (algorithm 28), where sv ∈R Zq. The voting ap-
plication subsequently interacts with the digital ballot box in the protocol 1
WriteOnBoard(Vi,mvec, cvec, pvec) to append the vote encryption commitment
item bvec on the board, where mvec = ”voter encryption commitment”, the con-
tent cvec consists of the commitment cv, and the parent pvec is the address of
the voter session item, received in section 3.3.1. Note that before appending the
new item, the board consists of {b1, ..., bk−1}, thus bvec becoming the kth item.

After publishing the voter encryption commitment item on the bulletin board,
the digital ballot box immediately generates its own set of encryption randomiz-
ers r⃗d = {rd;1, ..., rd;ℓ} ∈R Zℓq and commitment cd ← Com(r⃗d, sd) (algorithm 28),
where sd ∈R Zq. It then self-writes a server encryption commitment item bsec on
the board by running protocol 1 WriteOnBoard(D,msec, csec, psec), wheremsec =
”server encryption commitment”, the content csec consists of its commitment
cd, and psec is the address of the voter encryption commitment item bvec.

Next, the digital ballot box returns to the voting application both items bvec and
bsec together with their respective receipts, according to the protocol 1 described
in section 2.4.1 and the empty cryptograms e⃗d = {ed;1, ..., ed;ℓ}, with each ed;i
being the encryption of the neutral point O using the encryption randomizers
rd;i. The voting application performs the validation of the board items bvec and
bsec according to the protocol 1 and continues, if successful.

After both parties have published their encryption commitment items, as pre-
sented in figure 6, the voting application encrypts the voter’s encoded vote V⃗
(as constructed in section 3.3.2) by computing ev;i ← Enc(Yenc, Vi, rv;i) (al-
gorithm 18), with i ∈ {1, ..., ℓ}. This is further combined with the empty
cryptograms received from the digital ballot box to produce the voter’s fi-
nal ballot cryptograms e⃗ = {e1, ..., eℓ}, where ei ← HomAdd(ev;i, ed;i) (algo-
rithm 20). The voting application also computes as proof of correct encryption
PKi ← DLProve(rv;i, {G}) (algorithm 15) to confirm that the empty cryp-
tograms e⃗d have been used in the creation of the final ballot cryptograms e⃗.
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Voter Vi Digital Ballot Box D

internal knowledge: xi, YD, ℓ,
αvs = αcnf ∪ {bvs}

internal knowledge: xD, Yenc, ℓ,
b = {b1, ..., bk−1}

r⃗v = {rv;1, ..., rv;ℓ} ∈R Zℓq, sv ∈R Zq
cvec ← Com(r⃗v, sv), pvec ← the address of bvs
mvec ← ”voter encryption commitment”

Vi and D perform protocol 1 to write bvec as the kth item of b
(bvec, ρvec)← WriteOnBoard(Vi,mvec, cvec, pvec), therefore bvec ∈ b

r⃗d = {rd;1, ..., rd;ℓ} ∈R Zℓq, sd ∈R Zq
csec ← Com(r⃗d, sd), psec ← the address of bvec
msec ← ”server encryption commitment”

perform protocol 1 to write bsec as the (k + 1)th item of b

(bsec, ρsec)← WriteOnBoard(D,msec, csec, psec),

therefore bsec ∈ b

ed;i ← Enc(Yenc,O; rd;i), with i ∈ {1, ..., ℓ}
e⃗d ← {ed;1, ..., ed;ℓ}

(bvec, ρvec), (bsec, ρsec), e⃗d

hvs ← the address of bvs
verify AncestryVer({bvec, bsec}, hvs)
and ItemVer(bsec, YD)

Figure 5: Encryption commitments submission protocol

Finally, the voting application interacts with the digital ballot box in the pro-
tocol WriteOnBoard(Vi,mbc, cbc, pbc) (protocol 1) to append the ballot cryp-
togram item bbc on the board, where mbc = ”ballot cryptograms”, the content
cbc consists of the cryptograms e⃗, and the parent pbc is the address of the server
encryption commitment item bsec. Note that this time the bulletin board con-
sists of items b′ = {b1, ..., bk′−1}, where k′ ≥ k as more items could have been
appended by other voters in between the protocols from figure 5 and figure 6,
resulting in bbc becoming the k′

th
item.

Additionally, the voting application submits the proofs {PK1, ..., PKℓ} to the
digital ballot box, which performs protocol 1 if DLVer(PKi, {G}, {Ri− [rd;i]G})
(algorithm 16) succeeds, for each i ∈ {1, ..., ℓ}, where the content of the item
cbc consists of e⃗ = {e1, ..., eℓ} and each ei = (Ri, Ci).
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Voter Vi Digital Ballot Box D

internal knowledge: xi, YD, Yenc, ℓ,
αsec = αcnf ∪ {bvec, bsec}, V⃗ = {V1, ..., Vℓ},
r⃗v = {rv;1, ..., rv;ℓ}, e⃗d = {ed;1, ..., ed;ℓ}

internal knowledge: xD, Yenc, ℓ,
b′ = {b1, ..., bk′−1},
r⃗d = {rd;1, ..., rd;ℓ}

ev;i ← Enc(Yenc, Vi; rv;i), with i ∈ {1, ..., ℓ}
ei ← HomAdd(ed;i, ev;i)
e⃗← {e1, ..., eℓ}
PKi ← DLProve(rv;i, {G})
cbc ← e⃗, pbc ← address of bsec
mbc ← ”ballot cryptograms”

{PK1, ..., PKℓ},
e⃗ = {e1, ..., eℓ}, with ei = (Ri, Ci)

verify that
DLVer(PKi, {G}; {Ri − [rd;i]G}), with i ∈ {1, ..., ℓ}

Vi and D perform protocol 1 to write bbc as the k′th item of b
(bbc, ρbc)← WriteOnBoard(Vi,mbc, cbc, pbc), therefore bbc ∈ b

cvts ← ∅, pvts ← the address of bbc
mvts ← ”verification track start”

perform protocol 1 to write bvts as the first item on the

hidden track introduced by the ballot cryptograms item bbbc

(bvts, ρvts)← WriteOnBoard(D,mvts, cvts, pvts),

therefore bbbc = {bvts}

(bbc, ρbc), (bvts, ρvts)

hsec ← the address of bsec,
hbc ← the address of bbc

verify AncestryVer({bvts, bbc}, hsec),
ItemVer(bvts, YD) and HistoryVer({bvts}, hbc)

Figure 6: Encrypted ballot submission protocol

After publishing the ballot cryptograms item on the bulletin board, the digital
ballot box immediately self-writes a verification track start item bvts on the hid-
den track of the bulletin board bbbc by running WriteOnBoard(D,mvts, cvts, pvts)
(protocol 1), where mvts = ”verification track start”, the content csec is empty
and the parent pvts is the address of the ballot cryptogram item bbc. Note that,
at this point, the hidden track contains bbbc = {bvts}.

Next, the digital ballot box returns both items bbc and bvts to the voting appli-
cation together with their respective receipts, according to the protocol 1. The
voting application validates the two board items according to the protocol 1. In

32



addition, it checks that the verification track start item is the only item on the
hidden track by HistoryVer({bvts}, hbc) (algorithm 2), where hbc is the address
of the ballot cryptograms item.

Note that each cryptogram ei is actually equivalent to Enc(Yenc, Vi; ri), where
ri = rv;i + rd;i. Both the voter and the digital ballot box know part of the ran-
domizer value, rv;i and rd;i respectively, but neither of them knows the combined
value ri, for any i ∈ {1, ..., ℓ}.

3.3.4 Challenging a vote cryptogram

After encrypting a ballot, the voter Vi can choose whether to test or cast it. To
perform the testing process of an encrypted ballot, the voter needs to interact
with the external verifier that will perform all the testing operations on behalf
of the voter, according to the data published on the bulletin board. At the
end of the testing process, the voter will be presented with the vote choices
encoded in the encrypted ballot. The encrypted ballot being tested gets spoiled
when doing the testing procedure. Therefore, the voter needs to redo the vote
cryptogram generation process from section 3.3.3 to get a new encrypted ballot,
which the voter has to choose again whether to test or to cast. This process can
be repeated until the voter trusts the legitimacy of the next encrypted ballot
generated by the voting application. The protocol is inspired by [3].

The first part of the protocol (figure 7) establishes a trusted connection between
the voting application and the external verifier over the bulletin board. The
voter inputs into the external verifier the address of the verification track start
item bvts, which queries the digital ballot box for the item at that address and
its ancestry. The digital ballot box returns αvts = αcnf∪{bvs, bvec, bsec, bbc, bvts},
which consists of all the configuration items αcnf (e.g., the genesis item, election
configuration items, contest configuration items, etc.) plus all the voting items
that are relevant to voter Vi. Notice that all configuration and voting items
are on the public bulletin board (i.e., αcnf , bvs, bvec, bsec, bbc ∈ b), except the
verification track start item bvts which exists on the hidden track bbbc that has
been spawned by the ballot cryptograms item bbc.

The external verifier validates the list by running AncestryVer(αvts,∅) (algo-
rithm 1), therefore checking that αvts has a consistent ancestry all the way
through the genesis item, which has no parent. Thus, the parent of the entire
ancestry is null or ∅. The external verifier also checks the integrity of every item
by ItemVer(bj , YW) (algorithm 3), where bj ∈ αvts and YW is the public key of
the respective writer, according to the rules from appendix B. Note that the set
of writers, as presented in section 2.4, consists of the voter Vi, the digital ballot
box D, the election administrator E and the voter authorizer A. The external
verifier can extract the voter’s public key Yi from the voter session item bvs and
the other public keys YD, YE and YA from the configuration items. If valid, the
external verifier notifies the voter that the ballot was successfully found.
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Then, the voter chooses to test the encryption of the ballot, so the voting ap-
plication interacts with the digital ballot box in WriteOnBoard(Vi,msr, csr, psr)
(protocol 1) to append the spoil request item bsr on the board, where msr =
”spoil request”, the content csr is empty and the parent psr is the address of the
ballot cryptograms item bbc.

After publishing the spoil request item bsr, the digital ballot box sends the new
item also to the external verifier, which verifies its integrity ItemVer(bsr, Yi) (al-
gorithm 3) and that it is consistent with the ancestry AncestryVer({bsr}, hbc) (al-
gorithm 1), where hbc is the address of the ballot cryptograms item bbc. If valid,
the external verifier generates its key pair (xX , YX )← KeyGen() (algorithm 17)
and interacts with the digital ballot box in WriteOnBoard(X ,mv, cv, pv) (proto-
col 1) to write a verifier item bv on the hidden track, where mv = ”verifier”, the
content cv contains the external verifier’s public key YX and the parent pv is the
address of the spoil request item bsr. Note that the verifier item bv is appended
on the hidden track introduced by the ballot cryptograms item bbc. Therefore,
at the end of this step, the hidden track consists of bbbc = {bvts, bv}. From this
point on, the external verifier represents identity X on the hidden track bbbc .

The protocol continues with figure 8 where the external verifier returns to the
voter with the address of the verifier item hv. The voter also receives the
verifier item bv from the digital ballot box. The voter checks the integrity of the
item ItemVer(bv, YX ) (algorithm 3) and that it is consistent with the ancestry
AncestryVer({bv}, hvts) (algorithm 1), where YX is extracted from the content
of the verifier item and hvts is the address of the verification track start item.
Then the voter checks that the address received from the external verifier is
consistent with the verifier item received from the digital ballot box. If valid,
the voter managed to establish a trusted connection with the external verifier
over the bulletin board. Therefore the protocol can continue.

Next, both the voter and the digital ballot box collaborate to securely deliver
their encryption randomizers r⃗v and r⃗d respectively to the external verifier, as
generated in section 3.3.3. The external verifier will use them to decrypt the
voter’s ballot cryptograms and present the vote choices for assessment.

This is achieved by the voting application encrypting (using standard sym-
metric key encryption) the randomizers and the commitment opening dv ←
SymEnc(kv, r⃗v||sv) (algorithm 23), where kv is a derived symmetric key based
on Diffie-Hellman key exchange mechanism between the voter and the external
verifier, i.e., kv ← DerSymKey(xi, YX ) (algorithm 36). Then, the voter interacts
with the digital ballot box to write the voter commitment opening item bvco on
the hidden track WriteOnBoard(Vi,mvco, cvco, pvco) (protocol 1), where mvco =
”voter commitment opening”, content cvco consists of the encryption dv and the
parent pv is the address of the verifier item bv.

After publishing the voter commitment opening item, the digital ballot box
immediately computes its own encryption of the randomizers and commitment
opening dd using the same strategy as the voter in the previous paragraph.
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Then, it self writes a server commitment opening item bsco on the board by
running WriteOnBoard(D,msco, csco, psco) (protocol 1), where msco = ”server
commitment opening”, the content csec consists of the encryption dd and the
parent psco is the address of the voter commitment opening item bvco.

Then (figure 9), the external verifier is notified about both commitment open-
ing items, which verifies their integrity and that they are consistent with the
previous ancestry. If valid, it decrypts (using standard symmetric key decryp-
tion) both commitment openings of the voter (r⃗v, sv) ← SymDec(kv, dv) (al-
gorithm 24) and of the digital ballot box (r⃗d, sd) ← SymDec(kd, dd), where
the encryptions dv and dd are extracted from the content of the voter and the
server commitment opening items respectively. The symmetric keys kv and kd
are computed based on the Diffie-Hellman key exchange mechanism between
the external verifier and the voter or the digital ballot box, respectively.

Next, the external verifier checks whether the commitment openings are consis-
tent with the commitments that were published in section 3.3.3, i.e., verification
of the voter commitment ComVer(cv, r⃗v, sv) (algorithm 29) and of the server
commitment ComVer(cd, r⃗d, sd), where commitments cv and cd are extracted
from the voter and server encryption commitment items respectively. If com-
mitments are valid, the external verifier proceeds to unpack the cryptograms e⃗,
which are extracted from the ballot cryptograms items bbc. If any validations
fail, the external verifier informs the voter about the failure.

The external verifier unpacks vote V⃗ ′ by decrypting a variant of each cryptogram
ei = (Ri, Ci), with ei ∈ e⃗, where point Ri is substituted by the encryption key
Yenc, such that it can be decrypted by the randomizer rv;i + rd;i instead of the
decryption key. Note that the encryption key Yenc can be extracted from the
threshold configuration item, which is part of αcnf . Formally, V⃗ ′ = {V ′1 , ..., V ′ℓ },
with V ′i ← Dec(rv;i + rd;i, e

′
i) (algorithm 19), where e′i ← (Yenc, Ci).

Finally, the external verifier presents the vote V⃗ ′ to the voter, which can compare
to the original vote choice V⃗ , as computed in section 3.3.2. Note that V⃗ ′ can
even be decoded into a human-readable presentation of the vote choices by
decoding it to bytes DecodeVote(V⃗ ′) (algorithm 5) and then into a plain-text
vote according to the configuration from αcnf . If the vote matches, then the
voter is assured that the voting application behaved correctly (i.e., encrypted
a genuine vote). Otherwise, the voter has evidence that the voting application
has misbehaved during the process and should act accordingly.
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Voter Vi External Verifier X Digital Ballot Box D

internal knowledge: xi, YD,
αvts = αcnf ∪ {bvs, bvec, bsec, bbc, bvts}

no internal knowledge internal knowledge: xD, b = {b1, ..., bk−1},
bbbc = {bvts}, where αcnf , {bvs, bvec, bsec, bbc} ⊂ b

address of bvts
address of bvts

αvts = αcnf ∪ {bvs, bvec, bsec, bbc, bvts}

Yi = the content of bvs, {YD, YE , YA} = the contents of αcnf

verify AncestryVer(αvts,∅) and ItemVer(bj , YW) for each bj ∈ αvts,
where W ∈ {D, E ,A,Vi} according to rules form appendix B

”ballot found”

msr ← ”spoil request”, csr ← ∅, psr ← address of bbc

Vi and D perform protocol 1 to write bsr as the kth item of b
(bsr, ρsr)← WriteOnBoard(Vi,msr, csr, psr), therefore bsr ∈ b

bsr

hbc ← the address of bbc
verify AncestryVer({bsr}, hbc) and ItemVer(bsr, Yi) then:

(xX , YX )← KeyGen(),
mv ← ”verifier”, cv ← YX , pv ← address of bsr

X and D perform protocol 1 to write bv as the second item of the hidden track bbbc

(bv, ρv)← WriteOnBoard(X ,mv, cv, pv), threfore bbbc = {bvts, bv}

Figure 7: External verifier setup protocol
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Voter Vi External Verifier X Digital Ballot Box D

internal knowledge: xi, YD, r⃗v, sv,
αbc = αcnf ∪ {bvs, bvec, bsec, bbc},

αvts = αbc ∪ {bvts}, αsr = αbc ∪ {bsr}

internal knowledge: xX ,
αbc = αcnf ∪ {bvs, bvec, bsec, bbc},

αv = αbc ∪ {bvts, bv}, αsr = αbc ∪ {bsr}

internal knowledge: xD, YX ,
r⃗d, sd, b, b

bbc = {bvts, bv}

hv = address of bv
bv

YX = the content of bv, hvts = the address of bvts
verify AncestryVer({bv}, hvts), ItemVer(bv, YX ) and address of bv = hv then:

kv ← DerSymKey(xi, YX ), dv ← SymEnc(kv, r⃗v||sv)
cvco ← dv, pvco ← address of bv
mvco ← ”voter commitment opening”

Vi and D perform protocol 1 to write bvco as third item of the hiddne track bbbc

(bvco, ρvco)← WriteOnBoard(Vi,mvco, cvco, pvco), therefore bbbc = {bvts, bv, bvco}

kd ← DerSymKey(xD, YX ), dd ← SymEnc(kd, r⃗d||sd)
csco ← dd, psco ← address of bvco
msco ← ”server commitment opening”

perform protocol 1 to write bsco as the forth item on the

hidden track bbbc , therefore bbbc = {bvts, bv, bvco, bsco}
(bsco, ρsco)← WriteOnBoard(D,msco, csco, psco)

bvco, bsco

verify AncestryVer({bvco, bsco}, hv) and ItemVer(bsco, YD)

Figure 8: Commitment opening submission protocol
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Voter Vi External Verifier X Digital Ballot Box D

internal knowledge: V⃗ internal knowledge: xX , Yi, YD,
αv = αcnf ∪ {bvs, bvec, bsec, bbc, bvts, bv}

internal knowledge: xD,
b, bbbc = {bvts, bv, bvco, bsco}

bvco, bsco

verify AncestryVer({bvco, bsco}, hv),
ItemVer(bvco, Yi) and ItemVer(bsco, YD) then:

dv = the content of bvco, dd = the content of bsco
cv = the content of bvec, cd = the content of bsec
e⃗ = {e1, ..., eℓ} = the content of bbc, with ei = (Ri, Ci)
Yenc = the contents of αcnf

kv ← DerSymKey(xX , Yi), (r⃗v, sv)← SymDec(kv, dv)
kd ← DerSymKey(xX , YD), (r⃗d, sd)← SymDec(kd, dd)

verify that ComVer(cv, r⃗v, sv) and ComVer(cd, r⃗d, sd) then:

V⃗ ′ = {V ′
1 , ..., V

′
ℓ }, with V ′

i ← Dec(rv;i + rd;i, e
′
i), where e

′
i ← (Yenc, Ci)

V⃗ ′

verify that V⃗ = V⃗ ′

Figure 9: Unpacking the encrypted ballot protocol
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3.3.5 Vote confirmation receipt

After encrypting a ballot, the voter Vi can choose whether to test or cast it.
After deciding to cast the ballot, the voter receives a receipt from the digital
ballot box that confirms that the ballot has been registered as cast on the public
bulletin board.

The voter has to follow the protocol from figure 10 where the voting application
interacts with the digital ballot box in WriteOnBoard(Vi,mcr, ccr, pcr) (protocol
1) to append the cast request item bcr on the board, where mcr = ”cast re-
quest”, the content ccr is empty and the parent pcr is the address of the ballot
cryptograms item bbc.

After publishing the cast request item on the bulletin board, the digital ballot
box return to the voting app with the item bcr and its receipt ρcr. The voting app
checks the item according to validations of protocol 1, and if valid, the voting
application presents the receipt ρcr together with σcr and hcr to the voter.

The voter stores the tuple as the vote confirmation receipt (i.e., proof of the
ballot being cast on the bulletin board). The voter can use it at any time to check
that the vote is registered on the bulletin board as described in section 4.1.2.

Note that if a voter Vi has a vote confirmation receipt (ρcr, σcr, hcr) that is valid
(i.e., SigVer(YD, ρcr;σcr||hcr) (algorithm 26), where YD exists on the bulletin
board b) but does not correspond with the current state of the bulletin board
(i.e., hcr is not the address of any item of the bulletin board b), that reveals
that the integrity of the bulletin board has been broken and should be reported
to the election officials.

Voter Vi Digital Ballot Box D

internal knowledge: xi, YD,
αbc = αcnf ∪ {bvs, bvec, bsec, bbc}

internal knowledge: xD,
b = {b1, ..., bk−1}, where αbc ⊂ b

ccr ← ∅, pcr ← the address of bbc
mcr ← ”cast request”

Vi and D perform protocol 1 to write bcr as the kth item of b
(bcr, ρcr)← WriteOnBoard(Vi,mcr, ccr, pcr), therefore bcr ∈ b

σcr ← the voter’s signtaure on bcr
hcr ← the address of bcr

store (ρcr, σcr, hcr) as the vote receipt

Figure 10: Ballot casting protocol
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3.4 Post-election phase

After the voting phase has finished, the election proceeds to the last step, which
will generate the election result. Now, the digital ballot box does not accept
any new vote cryptograms. The bulletin board remains publicly available for
voters to check that their encrypted ballot is included (using their confirmation
receipt) and for auditors to check that the list item addresses are consistent (the
integrity of the board is persistent).

The process of computing a result consists of the following:

• the election administrator requests a result to be computed by interacting
with the digital ballot box in WriteOnBoard(E ,mei, cei, pei) (protocol 1) to
publish an extraction intent item bei on the bulletin board, according to
the rules from appendix B,

• the digital ballot box identifies all the valid ballots to be included in the
tally, according to section 3.4.1,

• a subset of all trustees Ti, with i ∈ τ and τ ⊂ {1, ..., nt}, collaborate in
the mixing process to anonymize the encrypted ballots, as described in
section 3.4.2, where nt is the total number of trustees and t ≤ |τ | ≤ nt
(recall from section 3.2.5 that t is threshold decryption value),

• the same subset of trustees collaborate in the decryption process (sec-
tion 3.4.3) of the anonymized votes,

• finally, the election administrator publishes the result in a verifiable man-
ner as described in section 3.4.4.

This process of computing a result is executed separately for each voting round
configured in the pre-election phase (described in section 3.2.6).

3.4.1 Cleansing procedure

Triggered by the extraction intent item bei being published, the digital ballot
box D bundles a matrix of cryptograms that represent only the valid votes
from the ballot cryptograms items from the bulletin board. Each matrix line
consists of a set of cryptograms that make up one ballot. To be considered valid,
the cryptograms must be extracted from the latest ballot cryptograms item for
each voter, followed by a cast request item. All other ballots are considered
overwritten and, therefore, discarded. This is, essentially, the votes that will be
decrypted and tallied as a result.

The matrix of cryptograms is called the initial mixed board, and it is defined
as ⃗⃗e0 = {e1,1, ..., ene,ℓ}, with each ei,j ∈ E, where E is the set of all possible
cryptograms, ne is the total number of extracted ballots, and ℓ is the number of
cryptograms a ballot is made out of. Note that the set {ei,1, ..., ei,ℓ} represent
the cryptograms that make up the ith ballot.
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Next, the digital ballot box D self-publishes an extraction data item bed on the
bulletin board by running WriteOnBoard(D,med, ced, ped) (protocol 1), where

med = ”extraction data”, the content ced consists of the initial mixed board ⃗⃗e0
and the parent ped is the address of the extraction intent item bei. The initial
mixed board ⃗⃗e0 is used as the input to the mixing phase.

The cleansing procedure is publicly auditable as both the list of vote cryp-
tograms and the initial mixed board are publicly available.

3.4.2 Mixing Phase

During the mixing phase, the board of cryptograms will change its appearance
several times, being shuffled in an indistinguishable way. Each trustee, Ti with
I ∈ τ , applies its mixing algorithm in sequential order (the output from Ti−1 is
the input to Ti). The first trustee applies its algorithm on the initial mixed board,
and the output of the last trustee is used as the final mixed board. The election
administrator facilitates the mixing phase and decides the order of trustees.

Formally, trustee Ti computes the mixed board of cryptograms by applying
⃗⃗ei ← Shuffle(Yenc, ⃗⃗ei−1, ⃗⃗ri, ψi) (algorithm 30), where Yenc is the encryption key,
⃗⃗ri ∈R Zne×ℓ

q and ψi is a permutation of ne elements. Next, as described in
appendix A.8, trustee Ti computes a proof of correct mixing (PMi, ASi) ←
MixProve(ψi, Yenc, ⃗⃗ri, ⃗⃗ei−1, ⃗⃗ei) (algorithm 33). Then, trustee Ti submits to the

election administrator the mixed board ⃗⃗ei and the mixing proof (PMi, ASi).

For a mixing step to be accepted, the validity of the mixing proof has to be
checked by running MixVer(PMi, ASi, Yenc, ⃗⃗ei−1, ⃗⃗ei) (algorithm 34). If the proof
fails, either that trustee recomputes the mixing step or is removed, and the
process continues without that trustee.

Obviously, each trustee Ti knows the shuffling coefficients (⃗⃗ri and ψi) of its own

mixing algorithm, and it can link the votes on the previous mixed board ⃗⃗ei−1
with the ones on the mixing board at ith step ⃗⃗ei. However, Ti does not know the
shuffling coefficients of the other trustees, so it cannot create a complete link
between the votes on the final mixed board and the ones on the initial mixed
board, unless all trustees are corrupt and collude against the election.

Assuming at least one honest trustee will not reveal its shuffling coefficients,
the final mixed board of cryptograms represents the anonymized version of the
initial mixed board of cryptograms. The final mixed board of cryptograms is
used in the decryption phase to compute the election results.
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3.4.3 Decryption Phase

Because the link between a vote cryptogram and its voter has been broken
during the mixing phase, it is safe to decrypt all the cryptograms from the final
mixed board as it does not violate the secrecy of the election. Furthermore,
decrypting this list of cryptograms would lead to accurate and correct results
as it contains the exact same votes as the initial mixed board, a fact proven by
the mixing proofs. In this section, the final mixed board is referred to as ⃗⃗e.

During the decryption phase, trustees must collaborate again to perform the
threshold decryption protocol as presented in figure 13. Each trustee, Ti with
I ∈ τ , gets the final mixed board of cryptograms ⃗⃗e = {e1,1, ..., ene,ℓ} then
computes partial decryptions of each cryptogram together with a proof of cor-

rect decryption by applying (
⃗⃗
Si, PKi) ← PartiallyDecryptAndProve(⃗⃗e, sxi) (al-

gorithm 6). Recall that trustee Ti owns its share of the decryption key sxi as it
has been computed during the threshold ceremony (section 3.2.5).

Then, trustee Ti submits the partial decryption
⃗⃗
Si and the proof PKi to the

election administrator service, which in figure 13 is referred to as the server.
The election administrator accepts the partial decryption if the proof validates

according to PartialDecryptionVer(⃗⃗e,
⃗⃗
Si, PKi, sYi) (algorithm 7), where sYi is the

public share of the trustee Ti, which is computable as in appendix A.5.3.

Upon receiving partial decryptions
⃗⃗
Si from all trustees Ti with i ∈ τ , the elec-

tion administrator follows the protocol from figure 13 and aggregates all partial
decryptions for each cryptogram in ⃗⃗e to finalize the decryption and extract the

votes
⃗⃗
V = {V1,1, ..., Vne,ℓ} ← FinalizeDecryption(⃗⃗e, { ⃗⃗Si|i ∈ τ}) (algorithm 8).

⃗⃗
V

represents the raw result of the election, i.e., the full list of votes as elliptic curve
points.

Algorithm 6: PartiallyDecryptAndProve(⃗⃗e, sx)

Data: The matrix of cryptograms ⃗⃗e = {e1,1, ..., en,ℓ} ∈ En×ℓ, with
ei,j = (Ri,j , Ci,j)

The share of decryption key sx ∈ Zq
for i← 1 to n by 1 do

for j ← 1 to ℓ by 1 do
Si,j ← [sx]Ri,j

end

end
⃗⃗
S ← {S1,1, ..., Sn,ℓ}
R⃗← {G,R1,1, ..., Rn,ℓ}
PK ← DLProve(sx, R⃗) // algorithm 15

return (
⃗⃗
S, PK) //

⃗⃗
S ∈ Pn×ℓ, PK ∈ P× Zq × Zq
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Algorithm 7: PartialDecryptionVer(⃗⃗e,
⃗⃗
S, PK, sY )

Data: The matrix of cryptograms ⃗⃗e = {e1,1, ..., en,ℓ} ∈ En×ℓ, with
ei,j = (Ri,j , Ci,j)

The partial decryptions
⃗⃗
S = {S1,1, ..., Sn,ℓ} ∈ Pn×ℓ

The proof of correct decryption PK ∈ P× Zq × Zq
The public share of decryption key sY ∈ P

R⃗← {G,R1,1, ..., Rn,ℓ}
S⃗ ← {sY, S1,1, ..., Sn,ℓ}
b← DLVer(PK, R⃗, S⃗) // algorithm 16

return b // b ∈ B

Algorithm 8: FinalizeDecryption(⃗⃗e,
⃗⃗
S⃗)

Data: The matrix of cryptograms ⃗⃗e = {e1,1, ..., en,ℓ} ∈ En×ℓ, with
ei,j = (Ri,j , Ci,j)

The partial decryptions
⃗⃗
S⃗ = { ⃗⃗Sk|k ∈ τ}, with each

⃗⃗
Sk = {Sk,1,1, ..., Sk,n,ℓ} ∈ Pn×ℓ

for i← 1 to n by 1 do
for j ← 1 to ℓ by 1 do

Vi,j ← Ci,j −
∑
k∈τ [λ(k)]Sk,i,j // λ(k) computed as in figure 13

end

end
⃗⃗
V ← {V1,1, ..., Vn,ℓ}

return
⃗⃗
V //

⃗⃗
V ∈ Pn×ℓ
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3.4.4 Result Publication

The results module is responsible for interpreting the raw result and presenting
the result of the election in a more readable way. The result interpretation
depends on the election type (simple election, multiple choice, STV, etc.).

For simplicity, we will consider the simple election case, where voters had to
choose one option from a predefined set of candidates, i.e., a vote is a plain text
representing a candidate’s name.

First, all votes V⃗i ∈
⃗⃗
V have to be decoded into bytes b⃗i ← DecodeVote(V⃗i) (al-

gorithm 5), then interpreted as text and finally mapped to one of the candidate

names. If any of these steps fail, the vote V⃗i is considered invalid. Tallying the
votes that each candidate received is considered trivial and out of scope for this
document.

Finally, all data that has been computed in the result ceremony (both mix-
ing and decryption phases) is collected by the election administrator E and
published on the bulletin board as the extraction confirmation item bec by per-
forming WriteOnBoard(E ,mec, cec, pec) (protocol 1), where mec = ”extraction
confirmation”, the parent pec is the address of the extraction data item bed and
the content cec consists of:

• a set of the following data from each trustee Ti that participated in the
result ceremony, with i ∈ τ :

– the mixed boards of cryptograms ⃗⃗ei

– the mixing proofs (PMi, ASi)

– the partial decryptions
⃗⃗
Si

– the proofs of correct decryption PKi

• the list of decrypted votes
⃗⃗
V

• the summarized (tallied) election result

3.5 Election properties

Eligibility: During the election phase, only a predefined set of voters are
allowed to cast a ballot on the bulletin board. The list of eligible voters V =
{V1, ...,Vnv} is defined, during the pre-election phase, in the voter authorizer
service, which authorizes the use of a public key Yi correlated with voter identity
Vi. The public key authorization is done by publishing a voter session item
on the bulletin board after voter Vi has successfully authenticated. This is
achieved differently, depending on the voter authentication mode that has been
configured during the pre-election phase. The two voter authentication modes
are described in section 2.5.
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When voter authentication mode is identity-based, voters successfully authen-
ticate to the voter authorizer the moment they manage to authenticate to all
identity providers I = {I1, ..., Ini

}, where ni is the number of identity providers.
That means, to falsely acquire an authorized public key (to cast a vote with),
one must forge successful authentication with all identity providers I.

Therefore, when voter authentication mode is identity-based, our protocol
has the eligibility property on the assumption that there is at least one honest
identity provider.

In case an election is configured to use only one identity provider (i.e., ni = 1),
then that identity provider could, in fact, authenticate and cast a vote on behalf
of any voter. Therefore, if voter authentication is provided by a single identity
provider, that must be assumed trustworthy.

When voter authentication mode is credential-based, voters successfully au-
thenticate to the voter authorizer by submitting a proof of credentials, which
is calculated based on all credentials received from all credentials authorities
C = {C1, ..., Cnc

} during the pre-election phase (as described in section 3.2.4),
where nc is the total number of authorities. The proof is verified against the
voter’s public authentication key, computed by the voter authorizer by aggre-
gating all public authentication keys received from all credentials authorities.

Therefore, when credential-based voter authentication mode is used, our pro-
tocol has the eligibility property on the assumption that there are multiple,
distinct credentials authorities participating in the voter credential distribution
process (section 3.2.4).

In case an election is configured to use only one credentials authority (i.e.,
nc = 1), then it could, in fact, authenticate and cast a vote on behalf of any
voter (as it knows all credentials of all voters). Therefore, if voter credentials are
provided by a single credentials authority, that must be assumed trustworthy.

Privacy: Following the election protocol, no partial results are computed dur-
ing the election process. A result is calculated only once after the election phase
has finished. This prevents influencing the subsequent voters throughout the
election period.

All votes that are posted on the bulletin board are encrypted using the ElGamal
cryptosystem based on elliptic curve cryptography (more details in appendix A.1
and appendix A.5). Moreover, using a t out of n threshold encryption scheme
(section 3.2.5), it is enforced that there is no single entity that can perform
the decryption of any data from the public bulletin board. Instead, minimum t
trustees are required to collaborate to compute a result.

Therefore, we claim that the protocol reaches the privacy property on the as-
sumption that there are at least t honest trustees, with 2/3 · n ≤ t ≤ n.
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One can argue that, because the bulletin board data is public, somebody could
save all the data for long enough until the elliptic curve cryptosystem is broken,
and so will be able to decrypt all the data contrary to our protocol. This
demonstrates that our system does not comply with the everlasting privacy
property. We take note of this fact and accept it.

Anonymity: This property is reached by implementing a mix-net of nodes
(trustees) that sequentially shuffle the list of vote cryptograms in an indistin-
guishable way before they get decrypted (section 3.4.2).

Obviously, each trustee knows how it shuffled the list of cryptograms but does
not know how the other trustees shuffled it. Thus, it is essential that trustees
do not communicate with each other.

We claim that our protocol has the anonymous property on the assumption that
there is a set of multiple trustees, out of which at least one is honest.

Integrity: The integrity of the election is preserved in our system by pub-
lishing all events (i.e., election configuration data or voting-related data) on the
bulletin board. Moreover, the bulletin board has a hash-chain structure that
guarantees that the history of the bulletin board never changes. Also, the voters
certify the authenticity of the bulletin board whenever they submit a new vote
cryptogram by signing on the history of the bulletin board.

Every time a new item is appended on the bulletin board, the writer of that
item receives a confirmation receipt ρi that contains a pointer to the item on
the bulletin board, called the address (or the board hash value) hi. This value
is computed based on the previous board hash value hi−1 (the address of the
previous item), which is calculated based on the one before, and so on, until it
reaches the genesis item, which uses value 00 as a previous address. This means
that every time a voter checks his vote confirmation receipt (as in section 3.3.5),
the entire bulletin board history is validated.

We claim that our protocol achieves the integrity property through the bulletin
board construction.

Verifiability: There are two levels of verifiability that different actors can
perform. Some steps are individually verifiable (i.e., only the voter that is cur-
rently performing this step can verify that the process is happening correctly),
such as:

• verify that the vote is cast as intended by challenging the vote cryptogram
as in section 3.3.4

• verify that the vote is registered as cast by checking the vote confirmation
receipt as described in section 3.3.5
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Some aspects of the election protocol are publicly verifiable:

• the distribution of the decryption key during the threshold ceremony

• the integrity of the bulletin board

• the correctness of the cleansing procedure

• the correctness of mixing and decryption phases, therefore verifying that
all votes are counted as registered

One particular aspect is privately verifiable and available only to election offi-
cials. That is the eligibility verifiability of each submitted vote. The argument
for it not being publicly available is that the verification is done based on some
voter identification data, such as names or email addresses. Therefore, this is
not publicly disclosed.

Being able to verify that a vote is cast as intended, registered as cast, and
counted as registered, we claim that our election protocol is end-to-end verifiable.

Receipt-freeness: During the vote cryptogram generation process (described
in section 3.3.3), the voter receives from the digital ballot box D a set of empty
cryptograms e⃗d which are used to generate the voter’s final vote cryptograms
e⃗ that is an encryption of the vote V⃗ . At the end of the process, each vote
cryptogram ei ∈ e⃗ would be equal to Enc(Yenc, Vi, rv;i + rd;i), where Vi ∈ V⃗ .
Note that r⃗d = {rd;1, ..., rd;ℓ} is known by the digital ballot box D and r⃗v =
{rv;1, ..., rv;ℓ} is known by the voter.

After the encrypted ballot e⃗ has been published and cast on the bulletin board,
the voter is not able to produce valid cryptographic evidence that e⃗ is an encryp-
tion of V⃗ referencing only the publicly available data, as the voting application
does not know value r⃗d. More details are described in appendix A.5.4.

Therefore, we claim that our election protocol has the receipt-freeness property.
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4 Auditing

This section describes the entire auditing process of an election. It presents
all the verification mechanisms, who conducts them, and what cryptographic
algorithms they involve. These verification mechanisms can be split into three
categories:

• voter-specific verification mechanisms that can be performed individually
by voters and target their specific vote (section 4.1),

• internal auditing processes performed by election officials that target the
behavior of the election system (section 4.2),

• publicly available audit processes that verify all data on the public bulletin
board (section 4.3).

4.1 Voter-specific verifications

During the voting process, voters can verify two aspects of their vote: that it
is cast as intended and registered as cast. These verification steps help voters
gain confidence that the election system behaves correctly, at least at processing
their vote.

4.1.1 Vote is cast as intended

At the end of the vote cryptogram generation process (section 3.3.3), the voter
is presented with a set of cryptograms e⃗ = {e1, ..., eℓ}, with each ei = (Ri, Ci),
where ℓ is the number of cryptograms a ballot is made out of. The set e⃗ is
the encryption of vote V⃗ with the encryption key Yenc and randomizers r⃗ =
{r1, ..., rℓ}, where each ri = rv;i+rd;i. The set of randomizers r⃗v = {rv;1, ..., rv;ℓ}
is known by the voting application and r⃗d = {rd;1, ..., rd;ℓ} is known only by the
digital ballot box. Hence, it is the voting application and the digital ballot box
that collectively perform the encryption of the voter’s vote.

Because the vote is encrypted, the voter cannot tell whether the cryptograms e⃗
actually represent an encryption of vote V⃗ or not. Therefore, to get convinced
that the voting application and the digital ballot box behaved correctly during
the vote cryptogram generation process, the voter can perform a challenge of
the vote cryptogram, as presented in section 3.3.4 to verify the activity of the
voting application and digital ballot box.

If the voter chooses to challenge the cryptogram, a second device is used to per-
form all the cryptographic validations on behalf of the voter. Both randomizer
sets r⃗v and r⃗d are sent securely from the voting application and the digital ballot
box, respectively, to the external verifier application that runs on the secondary
device. The verification application uses them to unpack the encrypted ballot
and present the vote choices to the voter. The fully detailed process is shown
in section 3.3.4.
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If the vote corresponds to the voter’s intended choices, then the voter gains
confidence that the voting application behaved correctly.

If the vote does not correspond to the voter’s intention, the auditing process
provides evidence that the encrypted ballot has not been cast as intended. Note
that in this case, there is no distinction between the election system maliciously
changing the voter’s vote behind the scenes or the voter accidentally mischoosing
the vote options.

After the voter has successfully audited the vote, it gets invalidated because each
of the randomizer values rv;i+rd;i has been exposed, for each i ∈ {1, ..., ℓ}. Now,
the voter has to regenerate a vote cryptogram (as presented in section 3.3.3)
and choose again whether to challenge or submit. Voters should challenge again
until they have enough confidence in the system to cast their vote as intended.

4.1.2 Vote is registered as cast

When the voter submits and casts an encrypted ballot (by submitting a cast
request item as described in section 3.3.5), a vote confirmation receipt (ρ, σ, h)
is returned as a response from the digital ballot box. The receipt contains a
digital signature of the digital ballot box, which certifies that the voter’s ballot
has been registered on the public bulletin board. The receipt can be validated
by checking SigVer(YD, ρ;σ||h) (algorithm 26), where YD is the public key of the
digital ballot box, σ is the voter’s signature on the cast request item, and h is
the address of the item on the bulletin board.

Anytime after casting a ballot, the voter can check the receipt against the bul-
letin board, which should find the appropriate ballot submission. Thus, the
voter gains confidence that the vote is registered as cast.

If a voter has a valid receipt (i.e., which validates SigVer(YD, ρ;σ||h) algo-
rithm 26) that does not correspond to any item from the public bulletin board,
then the tuple (ρ, σ, h) represents evidence that the integrity of the bulletin
board has been compromised. The argument is that a previously accepted item
has been removed or tampered with on the bulletin board.

4.2 Administration auditing process

This section describes the auditing steps that are available only to election
officials because they are based on data that is not publicly available. These au-
diting processes verify the activity of specific components of the election system.
The administration auditing processes give confidence to the election officials
that the election is run correctly. Therefore, the result is trustworthy.
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4.2.1 Eligibility verifiability

This auditing process verifies that only eligible voters have submitted ballots
to the bulletin board, i.e., verifying that all voter session items have been au-
thorized by the voter authorizer based on successful voter authentication. This
process can be done continuously throughout the election phase or as a final
auditing step at the end of the election phase but before a result is computed.

Formally, the auditing starts by providing all eligible voter identities V =
{V1, ...,Vnv}, the public key of the voter authorizer YA and the list of voter
session items from the bulletin board {bvs;1, ..., bvs;nvs

}, where nvs is the total
number of voter session items. Recall from section 2.4 that each item has the
following structure bvs;i = (mi, ci,A, σi, ti, pi, h′i, hi), with i ∈ {1, ..., nvs}.

The auditor checks that the voter authorizer has signed each item by running
SigVer(YA;σi,mi||ci||pi) (algorithm 26) and its content relates to an eligible
voter, i.e., ci = (Vi, Yi, Hi), with Vi ∈ V . Then, the auditor verifies that all
voter session items have been authorized after successful authentication, which
is achieved differently, depending on the voter authentication mode (section 2.5).

When credential-based voter authentication mode is enabled, the auditor has
also been provided with all voter authentication public keys {Yauth;1, ..., Yauth;nv}
for each of the voters in V . The voter authorizer provides all proofs of creden-
tials {PK1, ..., PKnvs

} associated with each voter session item from the bulletin
board. The auditor checks that Hi = H(PKi) and DLVer(PKi, {G}, {Yauth;i})
(algorithm 16), where Hi is the authentication fingerprint from the content of
the voter session item bvs;i and Yauth;i is the authentication public key of voter
Vi. In case one of the validations fails, that discovers an attempt of the voter
authorizer to create a fraudulent voter session.

Recall from section 3.2.4 that the proof of credentials PKi is initiated by cre-
dentials generated based on a minimum of 80 bits of entropy. Being so low on
entropy, the voter authentication public keys and proofs of credentials are not
publicly disclosed to prevent a brute-force attack. Therefore, they are auditable
only by the election officials.

When identity-based voter authentication mode is used, the auditor is pro-
vided instead, with the certificates of all identity providers I = {I1, ..., Ini

} in-
cluding their public keys {YI1 , ..., YIni

} and identities for all voters in V mapped
to each identity provider in I. When being audited, the voter authorizer has
to provide all identity tokens σid;i,j generated by each identity provider Ij ∈ I
used to create the voter session item bvs;i. The auditor checks that the iden-
tity tokens are associated with the voter session item Hi = H(σid;i,1||...||σid;i,ni

),
where Hi is the authentication fingerprint from the item content. Also, it checks
the validity of the identity tokens by SigVer(YIj , σid;i,j ,Vi) (algorithm 26) and
whether they are associated with an eligible voter, i.e., Vi ∈ V . In case any of
the validations fail, that discovers an attempt of the voter authorizer to create
a fraudulent voter session.
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Voter identities used for third-party identity providers are considered personal
data and cannot be publicly disclosed on the bulletin board. Therefore, this
auditing step is available only to election officials.

4.3 Public auditing process

Public auditing processes are accessible to anybody. They are used to validate
that the entire election is run correctly. This audit is typically run at the end
of the election period by certified auditors that will validate or invalidate an
election result. Nevertheless, it could be run both during the election phase or
when the election has finished by any public person with access to the public
bulletin board and suitable verification algorithms.

As part of the public auditing, the following verification steps are included:

• During the election phase and after the election has finished, anybody
can verify the integrity of the data published on the bulletin board, as
explained in section 4.3.1.

• After a result has been initiated (i.e., an extraction data item has been
published as in section 3.4.1), anybody can verify that the cleansing pro-
cedure has been performed correctly, as explained in section 4.3.2.

• After a result has been computed and published, any public auditor can
check the correctness of the result by verifying both the mixing process
(see section 4.3.3) and the decryption process (see section 4.3.4).

By having the election result auditable, the election protocol achieves one of
the end-to-end verifiability properties, i.e., verification that all votes have been
counted as registered.

4.3.1 Integrity of the bulletin board

This verification step checks that only qualified actors have published items on
the bulletin board. It also checks that no items have been removed or tampered
with once posted on the bulletin board. This is achieved by checking the in-
tegrity of the hash structure of the bulletin board (referred to as the history
property of the bulletin board in section 2.4) and by checking the validity of the
digital signatures of each item.

Formally, given a complete bulletin board or a portion of it, in the form of a
list of items b = {b1, ..., bn}, any public auditor can check the integrity of the
list by running HistoryVer(b, h′1) (algorithm 2), where h′1 is the address of the
previous item in the history. When b is a complete bulletin board (i.e., b1 is a
genesis item), then h′1 must be equal to ∅, as the genesis item has no previous
address.

Additionally, the auditor checks the correctness of the chosen parameters of each
item bi ∈ b (i.e., that it has a properly structured content ci and that it refer-
ences a proper parent pi both according to the rules specified in appendix B).
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Then the auditor validates the integrity of each item by ItemVer(bi, YWi), where
YWi

is the public key of the writer of the ith item. Note that, as described in
appendix B, depending on the type of item, one of the following actors can be
the writer of an item: the digital ballot box D, the election administrator E , the
voter authorizer A or a specific voter V. The public key of any of these actors
must be retrieved from the content of the bulletin board itself, such as:

• the public keys of the election administrator YE and of the digital ballot
box YD are listed in the genesis item,

• the public key of the voter authorizer YA is listed in an actor configuration
item that defines the voter authorizer role,

• each public key Yj of the j
th voter is introduced by a voter session item.

If any verification steps mentioned above fail, then b does not represent a valid
bulletin board trace.

4.3.2 Verification of the cleansing procedure

Given a bulletin board trace b, with an extraction data item included in b, any
public auditor can verify the correctness of the list of cryptograms ⃗⃗e0 present in
the extraction data item. Recall from section 3.4.1 that ⃗⃗e0 lists all votes that
will make up the election result.

The auditor reruns the cleansing procedure on the bulletin board b, applying all
the filtering rules specified in section 3.4.1 to recompute the initial mixed board
⃗⃗e ′0. If ⃗⃗e ′0 is identical with ⃗⃗e0, then the cleansing procedure has been performed
correctly.

4.3.3 Verification of mixing procedure

After a result has been published via an extraction confirmation item (as de-
scribed in section 3.4.4), any public auditor can verify the mixing procedure of
each trustee that participated in the mixing phase. This checks that no votes
have been tampered with during mixing. The data that an auditor needs to
collect comes from the following sources:

• the initial mixed board ⃗⃗e0 is listed in the extraction data item,

• the encryption keys Yenc and the list of trustees T = {T1, ..., Tnt
} are listed

in the threshold configuration item, where nt is the amount of trustees,

• the subset of trustees that participated in the mixing and decryption
phases τ ⊂ {1, ..., nt}, together with all the intermediate mixed boards

that they produced ⃗⃗ei, with i ∈ τ , and their respective proofs of correct
mixing (PMi, ASi) are included in the extraction confirmation item.

The auditor validates each intermediate mixed board by running algorithm 34
MixVer(PMi, ASi, Yenc, ⃗⃗ei−1, ⃗⃗ei), for each i ∈ τ . If any validations fail, the
published result is not trustworthy.
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4.3.4 Verification of the decryption

After a result has been published via an extraction confirmation item (as de-
scribed in section 3.4.4), any public auditor can verify the decryption procedure
by checking all the partial decryptions of each trustee that participated in the
decryption phase. The data that an auditor needs to collect comes from the
following sources:

• the list of all trustees T = {T1, ..., Tnt}, together with their public keys
{YT1 , ..., YTnt

} and public polynomial coefficients {PT1,1, ..., PTnt ,t−1}, are
listed in the threshold configuration item, where t is the threshold value
set during the threshold ceremony (see section 3.2.5), and nt is the total
number of trustees,

• the final mixed board ⃗⃗e is listed in the extraction confirmation item,

• the subset of trustees that participated in the mixing and decryption

phases τ ⊂ {1, ..., nt}, together with all their partial decryption
⃗⃗
Si, with

i ∈ τ , and their respective proofs of correct decryption PKi are also in-
cluded in the extraction confirmation item.

The auditor validates the proof of each partial decryption by running algorithm 7

PartialDecryptionVer(⃗⃗e,
⃗⃗
Si, PKi, sYi), for each i ∈ τ , where sYi is the public share

of the trustee Ti computed as in appendix A.5.3.

If all partial decryptions are valid, the auditor aggregates them together to

recompute the raw result
⃗⃗
V ← FinalizeDecryption(⃗⃗e, { ⃗⃗Si|i ∈ τ}) (algorithm 8).

The list of decrypted votes
⃗⃗
V should be identical to the published result. If any

validation step fails, the result is considered untrustworthy.

Counting the votes and sorting the candidates based on their vote count is
considered trivial and out of scope.
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5 Adversary model

This section describes the capabilities and limitations of an attacker that the
system is designed to protect against. Then, it exemplifies some attack vectors
and describes how the system defends against them.

Some scenarios present the way the system detects malicious activity rather than
preventing it from happening. In that situation, it is up to election officials to
assess the situation and make a recovery decision.

5.1 Attacker types

The election system is designed to protect against the following types of attack-
ers. We categorize attacker types based on what they can control and what
private information they can access.

5.1.1 Malicious users

The first category describes users that behave maliciously or have been com-
promised and impersonated by malicious actors. Therefore, we consider each
stakeholder listed in section 4.1 potentially malicious.

A malicious election official can try to alter the election configuration in
any imaginable way, either for destructive purposes or for modifying a candi-
date’s appearance. A malicious election official can also try to gain prohibited
information, such as a partial result.

A malicious voter can try to cast multiple ballots that get counted in the
tally. A voter can also try to disrupt an election by submitting an invalid vote.
Additionally, a voter can try to get cryptographic evidence that, at a later point,
will convince a third party of the content of the previously submitted vote.

A malicious trustee may try to gain sensitive information, such as compute
a partial result, read a particular voter’s vote, or even compute the main de-
cryption key. As a destructive action, a malicious trustee can try to prevent a
result from being calculated by refusing to participate in the post-election phase
protocol.

A malicious auditor may falsely claim the status of an election. For ex-
ample, a malicious auditor might try to convince the public that the integrity
property of an election is broken when it is not, or the other way around.

5.1.2 Compromised componenets

The second category of attackers relates to system components that get compro-
mised due to successful hacking attempts or malicious system administrators.
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A compromised trustee application can leak all the private data that
belongs to that particular trustee. This includes the trustee’s share of the
decryption and mixing coefficients. It can also tamper with the output of the
protocol it is supposed to perform.

A compromised voting application can tamper with the output of the
protocol it is supposed to perform.

A compromised credentials authority can leak all voter credentials gener-
ated in section 3.2.4. As a disruptive action, it can distribute wrong credentials
to the voters, i.e., credentials that do not correspond to the public authentica-
tion keys sent to the voter authorizer, as in section 3.2.4.

A compromised identity provider can generate fraudulent identity tokens
for voters, i.e., without successful authentication.

Compromised voter authorizer can leak its internal secrets including its
private key xA. Can generate fraudulent voter session items on the bulletin
board granting unauthorized voting access.

Compromised external verifier can display fake values to its user during
the protocol described in section 3.3.4.

5.1.3 Compromised communication channels

The last category of attackers describes breaches that happen to communication
channels. Recall from section 2.3 that an authentic channel can leak the data it
transports, while a public channel can leak and even allow tampering with the
data being transported.

The following list contains all the authentic communication channels that are
used throughout the protocol:

• the channel used between the election administration service and all the
other services that need to get their public key authorized for their role,
as described in section 3.2.2.

The following list contains all the public communication channels that are used
throughout the protocol:

• the channels used by the election administration service and the voter
authorizer to communicate with the digital ballot box

• the channel used by the voting application to the digital ballot box during
the vote cryptogram generation process section 3.3.3

• the channel used by the voting application to the voter authorizer during
the voter authorization procedure section 3.3.1
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• the channel used between the trustee application and the election adminis-
tration service in the threshold ceremony (section 3.2.5) and post-election
phase (section 3.4)

5.2 Assumptions

Our election protocol assumes the following limitations about a potential at-
tacker. The first category describes assumptions necessary for the election sys-
tem to work correctly. The second category describes the assumptions required
to fulfill the security properties described in section 3.5.

Assumptions related to the well-functioning of the election protocol:

• An attacker’s computation power is assumed to be polynomially bound.

• The elliptic curve discrete logarithm problem is assumed to be infeasible
to break, as described in appendix A.2.2.

• All the private communication channels are assumed to be secret and
tamper-resistant. The full list of private communication channels used in
the protocol consists of the following:

– generally, users are assumed to interact genuinely with their devices,

– the voting application assumes to receive correct inputs from voters,

– voters are not observed while interacting with their devices,

– the trustee application is assumed to correctly and secretly receive
trustee inputs, including the share of the decryption key in the post-
election phase section 3.4,

– election officials can interact genuinely and privately with a browser
to access the election administration service and voter authorizer,

– election officials can interact genuinely and privately with the audit-
ing scripts during the administration auditing process (section 4.2),

– credential authorities are assumed to secretly and correctly receive
voter contact information from an election official during the voter
credential distribution process (section 3.2.4),

– credential authorities are assumed to secretly and correctly distribute
voter credentials to the voters during the voter credential distribution
process (section 3.2.4),

– the voting application is assumed to genuinely and privately interact
with all third-party identity providers.

• All the authentic communication channels are assumed to be tamper-
resistant. The full list of authentic communication channels used in the
protocol consists of the following:
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– the channel used between the election administration service and all
the other services that need to get their public key authorized for
their role, as described in section 3.2.2.

Assumptions related to security properties:

• For achieving the eligibility property, we assume:

– when voter authorization mode is credential-based, there is at least
one honest credential authority that generates and distributes correct
voter credentials,

– when voter authorization mode is identity-based, there is at least
one honest third-party identity provider that generates genuine iden-
tity tokens on successful voter authentication,

– the administration auditing process (section 4.2) is trustworthy, i.e.,
an honest election official runs genuine auditing tools against real
election data.

• For achieving the privacy and anonymity properties, we assume:

– there are no more than t malicious trustees or compromised trustee
applications, where t is the decryption threshold configured during
the threshold ceremony (section 3.2.5),

– the voting application does not leak voter secret information.

• For achieving verifiability, we assume:

– A voter uses at least one honest device, e.g., either the voting appli-
cation device or the external verifier device,

– There are multiple external verifier deployments, out of which at least
one is considered trustworthy by the voter.

• For preserving the integrity, we assume that the integrity audit (sec-
tion 4.3.1) is trustworthy, i.e., an honest election official runs genuine
auditing tools against real election data.

5.3 Recoverable attack scenarios

Here, we present an extensive list of attacks that we considered and might
happen to an election. We also describe how the attack is detected and how the
system responds. On the other hand, in section 5.4, we describe some attacks
that the protocol only provides a way to detect. If they successfully happen, it
is up to election officials to assess the damage and decide on a resolution, e.g.,
repeat the election event.
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A corrupt election official maliciously changes the configuration
We consider the case when an election official decides to manipulate the election
by changing the configuration in an unauthorized way. The attack can happen
for various reasons, such as the stakeholder being malicious or the user’s account
being compromised and controlled by an external attacker.

Recall from section 3.2.2 that all configuration updates are documented on the
bulletin board as configuration items (i.e., election configuration items, contest
configuration items, etc.). Therefore, a vigilant honest election official can ob-
serve and detect suspicious changes to the election configuration that have not
been agreed upon.

In response, the honest election official can change the configuration back to the
correct one. If voters have voted according to the incorrect configuration, they
should be contacted and asked to vote again. Further investigation can reveal
what user account triggered the malicious configuration changes, and relevant
actions should be taken.

A corrupt election official attempts to read an unauthorized result
A corrupt election official has the ability to request a result to be computed at
any time. That requires altering the configuration to end the election phase,
then posting an extraction intent item on the bulletin board.

For this result to be computed, at least a threshold of trustees must collaborate
in the mixing and decryption ceremonies (section 3.4). Recall from section 5.2
that there are less than a threshold of corrupt trustees who are considered to
be willing to participate in an unauthorized result computation. Therefore, a
corrupt election official cannot read an unauthorized result, even if colluding
with corrupt trustees.

A malicious voter submits multiple ballots; ballot stuffing attempt
Voters are allowed to cast a ballot multiple times. Each action of casting a ballot
is done through a separate voter session which the voter authorizer introduces
based on distinct vote authentications. When an election official requests a
result calculation (section 3.4), the digital ballot box filters the entire bulletin
board and includes in the list of extracted ballots only the last cast ballot per
voter identifier, as described in section 3.4.1. Therefore, the system decrypts
and tallies no more than one ballot per voter.

A corrupt trustee attempts to decrypt the vote of a particular voter
Trustees are the stakeholders that hold and control the shares of the ballot
decryption key. Hence, we consider the case that a corrupt trustee decides
to decrypt a particular vote from the bulletin board as an attempt to break
anonymity. Even though the mixing phase can be skipped for such a scenario,
the decryption ceremony (section 3.4.3) is essential. Holding a decryption cer-
emony, which is not even documented on the bulletin board by an extraction
intent item, resembles an attempt to compute an unauthorized result, covered
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in an attack scenario described above. On the same assumption that there are
less than a threshold of corrupt trustees, it is infeasible for a targeted ballot to
be decrypted.

A corrupt trustee attempts to prevent a result from being computed
A result computation depends on the decryption phase, which depends on at
least a threshold of honest trustees to collaborate. This dependency is met
because of the assumption that there are at least a threshold of honest trustees.
Therefore, an authentic election result is computable, given that enough honest
trustees are functional.

A dishonest auditor spreads deceiving information about the integrity
status of the election
Any individual can claim any property or characteristic about an election run-
ning on our protocol. The essential part is to prove any of the claims correct
or false. To prove the integrity of an election, one must present a bulletin
board trace (list of board items) that is valid according to validations from sec-
tion 4.3.1, and that is initiated by an expected genesis item (i.e., the genesis
item has a specific address). Note that a proof of election integrity is bound
to the extent of the bulletin board trace, i.e., to prove the integrity of an en-
tire election process, one must provide a bulletin board trace that contains all
election events, from the genesis item to a result being computed and published.

Another aspect of verifying election integrity is the legitimacy of the auditing
software used to validate a bulletin board trace. Theoretically, one can run
all mathematical calculations by hand, but practically, that is outrageously in-
feasible. An auditor must rely on some software or scripts to run the auditing
process. Therefore, assuming possession of genuine auditing scripts and authen-
tic input data, an auditor is convinced about the integrity of an election, that
being the case.

A trustee gets compromised, the share of the decryption key and the
mixing coefficients get leaked
Regardless of whether a trustee turns malicious or gets compromised, the share
of the decryption key and the mixing coefficients (as generated in section 3.4.2)
of a trustee might get leaked. One share of the decryption key alone is useless.
One set of mixing coefficients can prove the connection of cryptograms between
two consecutive mixed boards of the mixing process but does not reveal the full
connection of ballots between the initial mixed board to the final one that gets
decrypted.

The key objective is to not leak too much information such that the anonymity
of an election is broken. The main decryption key cannot reasonably be com-
puted on the assumption that no more than a threshold of trustees can get
compromised. Moreover, all mixing coefficients used during mixing cannot be
collected. Therefore anonymity is preserved.
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A forged trustee application is used that defies the protocol
This scenario can happen due to a malicious trustee running unauthorized soft-
ware or a compromised trustee machine that replaced the genuine software.
Regardless of the reason, the unauthorized software is involved in the threshold
ceremony (section 3.2.5) during the pre-election phase and in the mixing and
decryption processes (sections 3.4.2 and 3.4.3) during the post-election phase.

Assuming a trustee application misbehaves and delivers incorrect data during
the threshold ceremony, the malicious activity is exposed at the end of the
ceremony when all trustees validate that their partial share of the decryption key
has been computed correctly. The process is better explained in appendix A.5.3.
When exposed, the election official organizing the threshold ceremony must
decide whether to redo the process or exclude that trustee and continue without.

Considering the case of a misbehaving trustee application during the mixing
phase (i.e., delivering faulty mixed board of cryptograms or proof of mixing),
the election administration service rejects the request of submitting a mixed
board because of the invalid proof of mixing. In this case, it is the decision of
the election official that organizes the ceremony whether to retry the mixing
process of that trustee or consider that trustee corrupt and excluded from the
ceremony.

When a trustee application misbehaves during the decryption phase (i.e., de-
livering a faulty partial decryption or proof of correct decryption), the elec-
tion administration service rejects the partial decryption because of the invalid
proof of correct decryption. Again, the election official decides whether to let
that trustee retry the decryption process or consider that trustee corrupt and
excluded from the ceremony.

A forged voting application is used that defies the protocol This sce-
nario can occur because of a malicious voter trying to disrupt the process or
a voter using a compromised device that has the genuine voting application
replaced with malicious software. The voting application is involved in the
voter authorization procedure (section 3.3.1), vote cryptogram generation pro-
cess (section 3.3.3), the process of challenging a vote cryptogram (section 3.3.4)
and the process of confirming a vote receipt (section 3.3.5).

First, we consider a misbehaving voting application during the voter authoriza-
tion procedure. Regardless of the authentication mode (credential-based or
identity-based), the first thing a malicious application could do is block the
voter authorization by sending incorrect authentication data to the voter autho-
rizer (i.e., tampering with the identity tokens in the identity-based mode or
submit a broken proof of credentials in the credential-based mode). The voter
is informed that the authorization failed. In response, the voter should close
the application and retry the authorization procedure from a different device.

A second attack the voting application could do is to steal the genuine authen-
tication data, use it to get a valid voter session, and vote on that voter’s behalf,
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all while informing the voter that the authorization failed. Again, the voter
should close the application and retry the authorization process from a different
device. If the second device behaves correctly, the voter session and all voting
data it generates replace the forged data published by the corrupt application.

Note that a vote cannot differentiate between using a compromised applica-
tion that prevents the authorization and actually using the wrong credentials.
Therefore, it is a human decision to evaluate how many times to retry the au-
thorization process before seeking a different kind of support.

Next, we consider the voting application misbehaving during the vote cryp-
togram generation process (i.e., the protocols from figures 5 and 6 between the
voting application and the digital ballot box). Verification mechanisms are built
into the digital ballot box for each interaction triggered by the voting applica-
tion. Eventually, the voting application presents the voter with a value that
should uniquely identify the encrypted ballot on the bulletin board (i.e., the
address of the verification track start item). The voter verifies the activity of
the voting application by using an external verifier to query the bulletin board
for the encrypted ballot.

Finally, the voting application might misbehave while handling the vote receipt.
If the voting application presents a fabricated vote receipt to the voter, the
external verifier will label the receipt as invalid. Suppose the voting application
claims the ballot has not been cast. In that case, the external verifier can query
the bulletin board for the actual ballot status by the address of the verification
track start item.

A forged voting application is used that changes the voter’s vote
This classical attack scenario can happen if a voter uses a compromised device
with a malicious voting application running. Basically, during the vote cryp-
togram generation process, the application replaces the plain-text vote with a
different one. The way a voter can verify the behavior of the voting applica-
tion is to perform the process of challenging a vote cryptogram, as described
in section 3.3.4. If the voting application is malicious, then the external veri-
fier is assumed to be trustworthy, therefore, through the challenging process, it
presents the voter with the actual vote encoded in the encrypted ballot.

Note that if there are discrepancies between the voter’s intention and the output
of the external verifier, there is no way of differentiating between a malicious
voting application and a mistype of the voter. Therefore, it is a human deci-
sion to evaluate how many times to retry the vote challenging process before
declaring the voting application malicious.

A forged external verifier is used that defies the protocol
This attack scenario can happen because one of the multiple external verifier
deployments is malicious or because the voter uses a compromised device that
runs unauthorized software. The external verifier is actively involved in the

61



process of challenging a vote cryptogram. Suppose it presents incorrect data
to mislead the voter into believing the vote has been incorrectly encoded. In
that case, the voter is encouraged to retry the vote challenging process even
by interacting with a different external verifier. Eventually, an honest external
verifier will confirm the legitimacy of the voter’s ballot.

A compromised credentials authority leaks all its voter credentials
This scenario is relevant when voter authentication mode is credentials-based.

Leaking all voter credentials generated by a credentials authority means that
the public knows the information that only that credentials authority had. The
other credentials authorities also gain this information. That means voters can
still authenticate as long as there is at least one honest credential authority. In
this case, that authority is trusted not to authenticate on behalf of voters, even
if it can do so.

Otherwise, as long as there are at least two sets of secret credentials, only the
voters are in possession of all their credentials. Therefore only the actual voters
can successfully authenticate, get authorized, and cast a ballot.

A malicious credentials authority distributes wrong voter credentials
This scenario is relevant when voter authentication mode is credentials-based.

This attack can happen because of a malicious credentials authority willing
to disrupt the election process by attempting to block the voter authorization
process. Another reason for distributing wrong voter credentials could be a
human accident, a bug in the source code, or a distribution error that is not
necessarily intentional.

Regardless of the reason, the problem can be detected rapidly by all voters
not being able to authenticate. Once detected, the problem can be fixed by
reconfiguring the voter authorizer to discard the voter authentication public keys
received from the problematic credential authority. The voter authentication
process can recover by making the voters authenticate with one less credential.
If a single active credentials authority is left in the process, it must be considered
trustworthy.

A compromised third-party identity provider maliciously generates
identity tokens for any voter identity
This scenario is relevant when voter authentication mode is identity-based.

This attack requires a third-party identity provider to become compromised so
an attacker can generate identity tokens for any voter identity. Such an attack
can be detected by that third-party provider, and then the voter authorization
configuration can be updated to not rely on that identity provider any longer
for voter authentication. The voter authorization process can continue with one
less identity provider. If a single active identity provider is left in the process,
it must be considered trustworthy.
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The voter authorizer gets compromised, its private key gets leaked,
or it authorizes voters without a successful authentication
This scenario can happen due to the voter authorizer service being compromised
by an attacker by a malicious system administrator leaking the private key. To
detect whether a key got compromised, an auditor can verify the activity of the
voter authorizer and check whether the voter authorizations it performed are
based on successful voter authentication.

When the voter authorizer is considered compromised, an election official can
deauthorize that component and set up a new voter authorizer service by posting
an actor configuration item with the new voter authorizer setup, including the
new public key. From then on, the new voter authorizer will perform all voter
authorizations.

An attacker eavesdrops on the communication between the election
administrator and the voter authorizer
This scenario describes the fact that the data exchanged between the election
administrator service and the other services (i.e., the voter authorizer) during
the process of setting up actors on the bulletin board (section 3.2.2) can be read
by an attacker. This data consists of public information that will eventually
end up on the bulletin board, such as the public key of the voter authorizer.
Therefore, listening in on this communication channel is harmless.

An attacker eavesdrops on the data of the configuration processes
This scenario describes the fact that the data exchanged between the election
administrator service and the digital ballot box during the election configuration
process (section 3.2.2) can be read by an attacker. This is public information
that is supposed to be accessible through the bulletin board. Therefore, listening
in on this communication channel is harmless.

An attacker tampers with the data of the configuration processes
This scenario describes an attempt by an external attacker to modify the election
configuration by tampering with the data in transit. Recall from section 3.2.2
that the configuration is published on the bulletin board in the form of bulletin
board items written by relevant actors, i.e., the election administrator service
or the voter authorizer. Basically, the attacker would tamper with the data
from protocol 1. The data in both the request and the response in protocol 1 is
accompanied by a digital signature generated by the appropriate actor, i.e., the
request is signed by the owner of the board item, while the response is signed
by the digital ballot box. In consequence, tampering with the data in transit
would invalidate the request and trigger a retry.

An attacker eavesdrops on the data of the voter authorization process
This scenario describes the fact that the data exchanged between the voter
authorizer service and the digital ballot box during the voter authorization
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procedure (section 3.3.1) can be read by an attacker. This is public information
that is supposed to be accessible through the bulletin board. Therefore, listening
in on this communication channel is harmless.

An attacker tampers with the data of the voter authorization process
This scenario describes an attempt of an external attacker to modify the con-
figuration of a voter session by tampering with the data from protocol 1. Recall
from section 3.3.1 that the voter data is published on the bulletin board as a
voter session item written by the voter authorizer. The data in both the request
and the response in protocol 1 is accompanied by a digital signature generated
by the appropriate actor, i.e., the request is signed by the voter authorizer, while
the response is signed by the digital ballot box. In consequence, tampering with
the data in transit would invalidate the request and trigger a retry.

An attacker eavesdrops on the data of the voting process
This scenario describes the fact that the data exchanged during the vote cryp-
togram generation process (section 3.3.3) can be read by an attacker. We have
already discussed that data transferred during the protocol 1 can be publicly
readable. Here we discuss the implication of leaking the extra data transferred
between the voting application and the digital ballot box.

During the protocol in figure 5, the response of the digital ballot box contains the
empty cryptograms used in the computation of the voter’s encrypted ballot. If a
third-party actor can read and trust the authenticity of the empty cryptograms,
combined with a voter willing to prove the vote content, the receipt freeness
property of the election is broken on that particular ballot.

During the protocol in figure 6, the request of the voting application contains
the proof of correct encryption, which is used to validate the request. Reading
this proof is harmless, as it gives no advantage to an attacker.

An attacker tampers with the data during the voting process
This scenario describes an attempt of an external attacker to interfere with the
data during the vote cryptogram generation process section 3.3.3. We have
already discussed that tampering with the data during the protocol 1 results in
rejecting the request. Here we cover the case of tampering with the extra data
that is transferred between the voting application and the digital ballot box.

During the protocol in figure 5, the digital ballot box responds with the empty
cryptograms used to encrypt the voter’s ballot. Suppose a third-party attacker
tampers with the empty cryptograms. In that case, a voter can detect the
discrepancy by performing the process of challenging a vote cryptogram (sec-
tion 3.3.4). During the challenging process, the voting application can verify
whether the empty cryptograms are according to the encryption commitment
published by the digital ballot box, therefore checking whether any interference
happened in the transfer.
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During the protocol in figure 6, the request of the voting application contains
the proof of correct encryption used to validate the request. Tampering with
the data in transit would invalidate the request and trigger a retry.

An attacker eavesdrops on the data of the threshold ceremony and
result ceremony
Data that is generated and transferred during the threshold ceremony (sec-
tion 3.2.5) and during the result ceremony (sections 3.4.2 and 3.4.3) is meant to
be published on the bulletin board, either as the threshold configuration item
(for the threshold ceremony data) or as the extraction confirmation item (for the
mixing and partial decryption data). Therefore, eavesdropping on the threshold
ceremony and result ceremony is harmless.

There is one exception regarding the data being published on the bulletin board.
That is the encrypted partial secret shares sent by the trustees to the election ad-
ministration service during the threshold ceremony. Recall from appendix A.5.3
and figure 12 that each trustee computes partial secret shares for the other
trustees and then privately distributes them to the other trustees. That is
achieved by encrypting and delivering them to the election administration ser-
vice, where the other trustees can fetch them from. These partial secret shares
are stored and transferred in encrypted form, therefore, eavesdropping on them
is harmless.

An attacker tampers with the data of the threshold ceremony and
result ceremony
This scenario resembles the case of a compromised trustee application that de-
livers incorrect data during the threshold ceremony or mixing and decryption
phases. If the validations fail, there is actually no way for the election admin-
istration service to distinguish whether the trustee has wrongly computed the
data or it has been tampered with in transfer.

Nevertheless, tampering with the data during the threshold ceremony leads
to trustees failing to validate their partial secret share, therefore exposing the
incorrect data. Tampering with the data during the mixing or decryption phases
leads to the election administration service rejecting the request to submit a
mixed board or a partial decryption. In that case, it is up to the election official
that organizes the ceremony to redo the process or to exclude that trustee from
the process.

5.4 Disruptive attack scenarios

This section describes some attacks that the protocol does not protect against.
The protocol only supports detection mechanisms for them. If such an attack
is detected, we recommend restoring the setup with new, healthy components,
including the digital ballot box, and repeating the election event, if possible.
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The election administrator service gets compromised, and its private
key leaked
We present the scenario where the entire election administrator service gets com-
promised, therefore, no honest election official can access the system. In other
words, the election configuration and management functionalities fall under the
attacker’s control.

The attack is detectable by election officials being unable to push election config-
uration updates or noticing unauthorized configuration published on the bulletin
board. In such cases, the election data is considered unreliable as it is generated
from unreliable sources.

A portion of the bulletin board considered authentic (i.e., up to the unreliable
items published by the compromised election administrator service) can be used
to extract a result in an offline result ceremony. Basically, trustees have to
collaborate in the processes described in section 3.4, while offline scripts must
be used to simulate the actions of the election administration service and the
digital ballot box. Such a result loses the public verifiability property.

The digital ballot box gets compromised, and its private key leaked
We consider the case where the digital ballot box gets compromised. Therefore,
all functionalities based on using the private key of the digital ballot box are
considered untrustworthy. They include the generation of bulletin board items
that facilitate the voting process described in section 3.3, and the computation
of receipts returned during the protocol 1, which is a core building block of the
entire election protocol.

The attack is detectable by observing deviations from the protocol made by
the digital ballot box in terms of items written on the bulletin board. Another
detection mechanism is the fact that other system components receive invalid
receipts during their interactions with the digital ballot box. Another sign that
the private key of the digital ballot box has been compromised is by someone
owning a valid receipt of an item that is actually not on the bulletin board.

The bulletin board gets tampered with
Here, we describe a scenario where the bulletin board gets tampered with. This
can happen because of the digital ballot box getting compromised through an
external attack, a malicious system administrator, or even a bug in the system.

Tampering with the bulletin board implies that some items on the board are
modified or removed, thus breaking the history property of the public bulletin
board construction, described in section 2.4. The attack is detectable by an
auditor running the integrity audit process, as described in section 4.3.1. The
fraction of the bulletin board that has integrity preserved (i.e., from the genesis
item up to the first tampered-with item) could be used to extract a result in
an offline ceremony, as described above. However, such a result loses the public
verifiability property.
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5.5 Conclusion

We have described the threat model of our end-to-end verifiable election proto-
col and some potential attack scenarios that the system is designed to protect
against. We have also listed some attacks that the system can only detect but
not completely prevent from happening. We assume an attacker has a high
level of technical knowledge but cannot break the cryptographic primitives used
throughout the protocol. Some functionalities and responsibilities in the proto-
col are split amongst several entities in a threshold manner. In such cases, the
attacker is assumed to control a limited amount of those entities.

The proposed election protocol provides security guarantees against the pre-
sented adversary model. The protocol offers, on one hand, integrity and privacy
of the election data and, on the other hand, eligibility and anonymity for the
voters. The protocol is end-to-end verifiable, combining individual and univer-
sal verification steps. The protocol ensures that no one, including insider and
external attackers, can tamper with election data undetected.

However, it is essential to state that the protocol cannot defend against an
attacker with close to infinite computation power or an attacker that can break
the cryptographic primitives. We doubt such an attacker currently exists, but
we are sure that such capabilities might arise in the near future. Therefore we
are working on a future protocol version that relies on fewer assumptions about
the adversary’s capabilities. Moreover, we are aware that the protocol does not
provide ever-lasting privacy. That means an attacker controlling more than a
threshold of trustees can break anonymity and read sensitive information. This
is another research area we are currently investigating to improve.

Overall, our proposed cryptographic protocol represents a strong foundation for
building a secure, end-to-end verifiable digital voting solution.
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A Theoretical background

A.1 Mathematics

A.1.1 Group

In mathematics, a group G = (G, ◦, inv, e) is an algebraic structure consisting
of a set G of elements, a binary operation indicated by the symbol ◦, a unary
operation called inv and a neutral element e ∈ G. The following properties
must be satisfied by G:

closure x ◦ y ∈ G

associativity x ◦ (y ◦ z) = (x ◦ y) ◦ z

identity element x ◦ e = e ◦ x = x

inverse element x ◦ inv(x) = e

for all x, y, z ∈ G.

If G has a fifth property called commutativity (i.e. x ◦ y = y ◦ x), then G is an
abelian group.

Moreover, if G is a finite group, then G has a finite number of elements, and we
denote q = |G| as the order of the group. For example, a finite group would
be (Zq,+,−, 0), where Zq = {0, 1, ..., q − 1}, the binary operation is addition
modulo q, the inverse operation is negation, and the identity element is 0.

The binary operation can be applied on the same element, namely x ◦ x = [2]x.
We define [k]x as the operation ◦ applied k times on the element x.

A finite group G = (G, ◦, inv, e) of order q is called cyclic group, if there is a
group element g ∈ G, such that G = {g, [2]g, [3]g, ..., [q]g}. In this case, the
element g is called the generator of G.

A.1.2 Finite Field

A field F = (F,+, ·) consists of a set F, which is an abelian group in respect to
both operations: addition and multiplication. The following properties hold:

• x+ y ∈ F and x · y ∈ F

• (F,+,−, 0) is an abelian group

• (F∗, ·,−1 , 1) is an abelian group

• multiplication is distributive over addition: x · (y + z) = x · y + x · z

for all x, y, z ∈ F.

A finite field is a field with a finite number of elements, for example, the set of
integers modulo p, denoted Fp, where p is a prime number.
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A.2 Elliptic Curve

A.2.1 Elliptic Curve over a Prime Field

We define the elliptic curve E over the prime field Fp as the set of points

E(Fp) = {(x, y) ∈ (Fp)2 | y2 = x3 + ax+ b (mod p)} ∪ {O}

where a tuple (x, y) represent the coordinates of a point, O is the point at
infinity and a, b ∈ Fp.

The elliptic curve E(Fp) follows a group structure with the following rules:

• O is the identity element, thus P +O = O + P = P for all P ∈ E(Fp).

• The inverse operation is point negation noted −. For all P = (Px, Py) ∈
E(Fp), we define −P = (Px,−Py) such that P + (−P ) = O.

• The binary operation is point addition noted +. Let P,Q ∈ E(Fp). The
line through P and Q intersects the elliptic curve in a third point R =
(Rx, Ry) ∈ E(Fp). The point addition is defined as P + Q = −R. The
coordinates of R can be computed in the following way:

Rx = λ2 − Px −Qx (mod p)

Ry = Py + λ · (Rx − Px) (mod p)

where λ is the steep of line PQ. The steep can be computed in the
following way:

λ =

{
(Py −Qy) · (Px −Qx)−1 (mod p) , if P ̸= Q

(3 · P 2
x + a) · (2 · Py)−1 (mod p) , if P = Q

We define the total number of points on the E(Fp) as N , which can be calculated
using Schoof’s algorithm [4]. Any subgroup of E(Fp) has an order q, which is a
divisor of N . In such a case, we define the cofactor of the subgroup as h = N

q .
To find any generator of the subgroup, we perform the following:

• choose a random point P ∈ E(Fp),

• compute G = [h]P ,

• if G = O, repeat the process. Otherwise, G is a generator.

In conclusion, we can define our cryptographic cyclic subgroup as:

P = {P ∈ E(Fp) | P = [k]G, k ∈ Zq}

where G is the generator and q is the order of the subgroup. We call the integer
k a scalar.
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A.2.2 Elliptic Curve Discrete Logarithm Problem

The Elliptic Curve Discrete Logarithm Problem is defined in [5] the following
way: Given the elliptic curve domain parameters (p, a, b,G, q, h) and a point
P ∈ P, find the scalar k ∈ Zp such that P = [k]G. For an elliptic curve to be
cryptographically strong, the ECDLP has to be computationally infeasible.

A.2.3 Supported Elliptic Curves

There is support for the following elliptic curves:

Secp256k1(Bitcoin Curve):

p ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

fffffffe fffffc2f

a 00

b 07

G 02 79be667e f9dcbbac 55a06295 ce870b07 029bfcdb

2dce28d9 59f2815b 16f81798

q ffffffff ffffffff ffffffff fffffffe baaedce6 af48a03b

bfd25e8c d0364141

h 1

Secp256r1(NIST P-256):

p ffffffff 00000001 00000000 00000000 00000000 ffffffff

ffffffff ffffffff

a ffffffff 00000001 00000000 00000000 00000000 ffffffff

ffffffff fffffffc

b 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6

3bce3c3e 27d2604b

G 03 6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81

2deb33a0 f4a13945 d898c296

q ffffffff 00000000 ffffffff ffffffff bce6faad a7179e84

f3b9cac2 fc632551

h 1
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Secp384r1(NIST P-384):

p ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff fffffffe ffffffff 00000000 00000000 ffffffff

a ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff fffffffe ffffffff 00000000 00000000 fffffffc

b b3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e fe814112

0314088f 5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef

G 03 aa87ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62

8ba79b98 59f741e0 82542a38 5502f25d bf55296c 3a545e38

72760ab7

q ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

c7634d81 f4372ddf 581a0db2 48b0a77a ecec196a ccc52973

h 1

Secp521r1(NIST P-521):

p 01ff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff

a 01ff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff fffffffc

b 51 953eb961 8e1c9a1f 929a21a0 b68540ee a2da725b

99b315f3 b8b48991 8ef109e1 56193951 ec7e937b 1652c0bd

3bb1bf07 3573df88 3d2c34f1 ef451fd4 6b503f00

G 0200c6 858e06b7 0404e9cd 9e3ecb66 2395b442 9c648139

053fb521 f828af60 6b4d3dba a14b5e77 efe75928 fe1dc127

a2ffa8de 3348b3c1 856a429b f97e7e31 c2e5bd66

q 01ff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff fffffffa 51868783 bf2f966b 7fcc0148

f709a5d0 3bb5c9b8 899c47ae bb6fb71e 91386409

h 1

A.2.4 Elliptic Curve Point Encoding

Each point on the curve is represented by its x and y coordinate. As presented in
[5], the y coordinate can be calculated based on the x coordinate. Note that the
elliptic curve equation might spawn no valid values for y or two values for y. If
y is invalid, it means x is not a valid coordinate to generate a point. Otherwise,
the algorithm has to choose one of the two values for y and continue. Thus, one
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extra bit of information is required specifying which of the two values is to be
used.

An elliptic curve point can be represented as a byte array in two ways: com-
pressed form or uncompressed form. The compressed form contains the byte
representation of only the x coordinate, which is prepended a byte f ∈ {02, 03}
as a flag to determine which value to choose for the y coordinate. Formally,
y ← RecoverY(x, f) (algorithm 9).

The uncompressed form contains the byte representation of both x and y coor-
dinates concatenated together, to which is prepended the byte 04.

In our system, when an elliptic curve point has to be stored in the database, or
when it needs to be transferred over the network, or when it is used as input to
a hash function, it is represented as a byte array in compressed form.

Algorithm 9: RecoverY(x, f)

Data: The field element x ∈ Fp
The flag f ∈ {02, 03}

{y1, y2} ←
√
x3 + a · x+ b (mod p)

if {y1, y2} /∈ Z then
return failure

end
switch f do

case 02 do
y ← y1

end
case 03 do

y ← y2
end

end
return y // y ∈ Fp

A.2.5 Mapping a message on the Elliptic Curve

An important use case of a cryptographic system is to interpret an arbitrary
message (a plain text, a number, an id, or even a more complex construction).
In the elliptic curve context, that means mapping a message into an elliptic
curve point in a deterministic way. Additionally, this point must be able to be
interpreted back as the original message. This section considers the message as
an arbitrary byte array, and it is up to specific use cases to convert data to a
byte array (i.e., UTF-8 encoding of text, the byte representation of an integer,
or even custom encoding of complex JSON object).

Mapping a message b⃗ ∈ B∗ into an elliptic curve point is done by M ←
Bytes2Point(⃗b) (algorithm 10). The byte array b⃗ is prepended with an adjusting
byte b0 = 00 and appended (padded) with 00 bytes such that it has a length of
ℓ, which is the elliptic curve byte size (i.e., ℓ← ByteLengthOf(p) (algorithm 14),
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where p is the prime of the elliptic curve). The resulting byte array is inter-
preted as a field element x ∈ Fp. Then, the algorithm checks whether x spawns
a valid point M = (x, y), where y is computed according to the elliptic curve
equation y ← RecoverY(x, 02) (algorithm 9). If valid, then M is the encoding

of b⃗. Otherwise, the algorithm modifies x by incrementing the adjusting byte
and retries 255 times. If no valid point is found, the algorithm returns failure.

By having one byte space to find a valid point on the curve, [5] shows that
the probability of all 256 x coordinates to generate non-valid points is 1/2256,

which is considered acceptable. Formally, M ← Bytes2Point(⃗b) (algorithm 10)

converts any message b⃗ of legal size (i.e., |⃗b| ≤ ℓ − 1, where ℓ is the byte size
of the elliptic curve) into a valid elliptic curve point M with a negligible failure
rate.

Recovering the message b⃗ from an elliptic curve point M can be done by calling
b⃗ ← Point2Bytes(M) (algorithm 11). It extracts the byte representation of the
x coordinate, disregarding the rightmost 00 bytes and the adjusting byte b0.

Having these two algorithms, mapping a message on the Elliptic Curve is a sound
procedure as b⃗ = Point2Bytes(Bytes2Point(⃗b)), for all b⃗ ∈ B∗, with |⃗b| ≤ ℓ− 1.

Examples of ℓ values, depending on elliptic curves, are:

• ℓ = 32 for Secp256k1,

• ℓ = 32 for Secp256r1,

• ℓ = 48 for Secp384r1,

• ℓ = 65 for Secp521r1.
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Algorithm 10: Bytes2Point(⃗b)

Data: The byte array b⃗ = {b1, ..., bn} ∈ Bn
ℓ← ByteLengthOf(p)
if n > ℓ− 1 then

return failure
end
m← ℓ− n− 1
for i← 0 to 255 by 1 do

b0 ← i

b⃗ ′ ← {b0, b1, ..., bn, 00, ..., 00︸ ︷︷ ︸
m times

}

x← Bytes2Field(⃗b ′) // algorithm 12

y ← RecoverY(x, 02) // algorithm 9

if y is valid then
M ← (x, y)
if M is valid then

return M // M ∈ P
end

end

end
return failure

Algorithm 11: Point2Bytes(M)

Data: The point M = (x, y) ∈ P = Fp × Fp
ℓ← ByteLengthOf(p) // algorithm 14

b⃗ ′ = {b0, b1, ..., bn, 00, ..., 00︸ ︷︷ ︸
m times

} ← Field2Bytes(x) // algorithm 13

b⃗← {b1, ..., bn} // ℓ = m+ n+ 1

return b⃗ // b⃗ ∈ B∗

Algorithm 12: Bytes2Field(⃗b)

Data: The byte array b⃗ = {b1, ..., bn} ∈ Bn
ℓ← ByteLengthOf(p) // algorithm 14

if n ̸= ℓ then
return failure

end
x← 0
for i← 1 to n by 1 do

x← x ∗ 256 + bi
end
if x > p then

return failure
end
return x // x ∈ Fp
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Algorithm 13: Field2Bytes(x)

Data: The field element x ∈ Fp
ℓ← ByteLengthOf(p) // algorithm 14

for i← ℓ to 1 by 1 do
bi ← x mod 256
x← ⌊x/256⌋

end

b⃗← {b1, ..., bℓ}
return b⃗ // b⃗ ∈ Bℓ

Algorithm 14: ByteLengthOf(x)

Data: The number x ∈ Z
n← 0
while x ̸= 0 do

n← n+ 1
x← ⌊x/256⌋

end
return n // n ∈ N
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A.3 Zero Knowledge Proofs

A zero knowledge proof (ZKP) is an algorithm by which one party (the prover)
can prove to another party (the verifier) that she knows a secret value x, without
disclosing any information about x. A ZKP can be interactive, where the prover
and the verifier have to collaborate in a protocol for the verifier to get convinced
of the proof. A ZKP can also be non-interactive. In this case, the prover alone
generates a proof that is publicly verifiable, thus convincing any public verifier
of its statement.

There exist two algorithms: one for generating a proof and another for verifying
whether a proof is valid. A classic proof has a structure of a triple (commit-
ment, challenge, and response). In an interactive zero-knowledge protocol, a
prover commits to a value, the verifier independently and randomly generates
a challenge, the prover computes a response based on the challenge received,
and the verifier checks that the proof validates. The proof can be turned into
a non-interactive one using the Fiat-Shamir heuristic as described in [6]. The
prover computes alone the challenge, in a deterministic manner, based on the
commitment, using a hash function.

A.3.1 Discrete Logarithm Proofs

A simple kind of ZKP is the discrete logarithm proof that proves knowledge of
value x, such that Y = [x]G, formally PK[(x) : Y = [x]G]. The most intuitive
application of this could be to prove the possession of the private key associated
with a public key.

A bit more complex ZKP is the discrete logarithm equality proof that proves that
two different elliptic curve points Y, P ∈ P have the same elliptic curve discrete
logarithm x ∈ Zq in regards to two distinct generators G,H ∈ P, formally
PK[(x) : Y = [x]G ∧ P = [x]H].

An optimization in proving the discrete logarithm equality between multiple
points regarding their generators has been described in [7]. Using the optimized
algorithm to prove that

PK[(x) :

n∧
i=0

Yi = [x]Gi]

one can generate the proof PK = (K, c, r) by following the protocol described
in figure 11. The optimization consists of the fact that the commitment K is
just one point regardless of the value of n.

The proof of multiple discrete logarithms can be turned into a non-interactive
one by computing the challenge of the proof based on the commitment using a
hash function. The proof is generated by the algorithm PK ← DLProve(x, G⃗)

(algorithm 15), where G⃗ = {G0, ...Gn} is the list of generators.
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Prover Verifier

internal knowledge: x,
G⃗ = {G0, ..., Gn}, Y⃗ = {Y0, ..., Yn}

internal knowledge:
G⃗ = {G0, ..., Gn}, Y⃗ = {Y0, ..., Yn}

k ∈R Zq
zi ← H(i||Y1||...||Yn), with i ∈ {1, ..., n}

K ← [k](G0 +
n∑
i=1

[zi]Gi)

K

c ∈R Zq
c

r ← k + c · x (mod q)
r

zi = H(i||Y1||...||Yn), with i ∈ {1, ..., n}

verify that

[r](G0 +
n∑
i=1

[zi]Gi) = K + [c](Y0 +
n∑
i=1

[zi]Yi)

Figure 11: Protocol for proving multiple discrete logarithms

A public verifier accepts the proof if the algorithm DLVer(PK, G⃗; Y⃗ ) returns

true, where Y⃗ = {Y0, ..., Yn}. The verification algorithm is described in algo-
rithm 16.
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Algorithm 15: DLProve(x, G⃗)

Data: The private key x ∈ Zq
The list of generators G⃗ = {G0, G1, ..., Gn} ∈ Pn+1

k ∈R Zq
for i← 1 to n by 1 do

zi ← H(i||Y1||...||Yn) // Yj = [x]Gj, j ∈ {1, ..., n}
end

K ← [k](G0 +
n∑
i=1

[zi]Gi)

c← H(G⃗||K||Y⃗ )
r ← k + c · x (mod q)
PK ← (K, c, r)
return PK // PK ∈ P× Zq × Zq

Algorithm 16: DLVer(PK, G⃗; Y⃗ )

Data: The proof PK = (K, c, r) ∈ P× Zq × Zq
The list of generators G⃗ = {G0, G1, ..., Gn} ∈ Pn+1

The list of public keys Y⃗ = {Y0, Y1, ..., Yn} ∈ Pn+1

for i← 1 to n by 1 do
zi ← H(i||Y1||...||Yn)

end

if c = H(G⃗||K||Y⃗ )

and [r](G0 +
n∑
i=1

[zi]Gi) = K + [c](Y0 +
n∑
i=1

[zi]Yi) then

b← 1 // proof is valid

else
b← 0 // proof is invalid

end
return b // b ∈ B
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A.4 Hash functions

A cryptographic hash function is an algorithm used for mapping data of arbitrary
size to data of fixed size, also called the hash value. We define the hash function
H : B∗ ← Bℓ, where Bℓ represents a bit array of length ℓ. In practice, hash
algorithms work on byte arrays instead of bit arrays. Thus, the length of the
input or output array is ℓ/8.

A hash value can be computed for any data, such as a string, a number, or even
an object with a complex structure. The hash value would result from the hash
function applied to the byte representation of that particular input data. A hash
value can be computed for an arbitrary number of inputs simultaneously. In that
case, the hash function is applied to the concatenation of all byte representations
of each input.

A hash function is known as a one-way function, i.e., one can easily verify that
some input data maps to a given hash value, but if the input data is unknown,
it is infeasible to calculate it given only a hash value. Another property of
a cryptographic hash function is collision resistance. That means finding two
different input data with the same hash values is infeasible.

In our system, we will use the hash function called SHA-256 that outputs bit
arrays of 256 bits in length (32-byte array).

A.5 Elgamal cryptosystem

A.5.1 Encryption scheme

The Elgamal cryptosystem is an asymmetric, randomized encryption scheme
where anybody can encrypt a message using the encryption key, resulting in a
cryptogram. In contrast, only the one with the decryption key can extract the
message of a cryptogram. The scheme consists of a triple (KeyGen, Enc, Dec)
of algorithms that work on the elliptic curve described in appendix A.2.2. The
scheme is considered secure under the discrete logarithm assumption.

An Elgamal key pair is a tuple (x, Y ) ← KeyGen() (algorithm 17), where x is
a randomly chosen scalar representing the private decryption key and Y is an
elliptic curve point corresponding to the public encryption key.

Algorithm 17: KeyGen()

x ∈R Zq
Y ← [x]G
return (x, Y ) // (x, Y ) ∈ Zq × P

The encryption algorithm e = (R,C) ← Enc(Y,M ; r) (algorithm 18) can be
used by anybody in possession of the public encryption key Y to generate a
cryptogram on a message M , using the randomizer r. The cryptogram e can
be decrypted back to the original message M only by the one in possession of
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the private decryption key x in the decryption algorithm M ← Dec(x, e) (algo-
rithm 19). Note that both Enc and Dec work on messages that are formatted
as elliptic curve points M ∈ P.

For the sake of notation, we define E = P × P as the set of all possible cryp-
tograms.

Algorithm 18: Enc(Y,M ; r)

Data: The encryption key Y ∈ P
The message M ∈ P
The randomizer r ∈ Zq

R← [r]G
S ← [r]Y
C ← S +M
e← (R,C)
return e // e ∈ E

Algorithm 19: Dec(x, e)

Data: The decryption key x ∈ Zq
The cryptogram e = (R,C) ∈ E

S ← [x]R
M ← C − S
return M // M ∈ P

A.5.2 Homomorphic Encryption

Elgamal encryption based on elliptic curve cryptographic primitive is a ho-
momorphic encryption scheme concerning point addition. That means the
component-wise addition of two cryptograms would result in a new, valid cryp-
togram containing the two messages summed up.

Enc(Y,M1; r1) + Enc(Y,M2; r2) = Enc(Y,M1 +M2; r1 + r2)

The resulting encryption of the homomorphic addition of two cryptograms is
e′ = (R′, C ′)← HomAdd(e1; e2) (algorithm 20).

Algorithm 20: HomAdd(e1; e2)

Data: The first cryptogram e1 = (R1, C1) ∈ E
The second cryptogram e2 = (R2, C2) ∈ E

R′ ← R1 +R2

C′ ← C1 + C2

e′ ← (R′, C′)
return e′ // e′ ∈ E
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Following the procedure above, a given cryptogram e = (R,C) can be re-
encrypted by homomorphically adding it to an empty cryptogram (i.e., an en-
cryption of the neutral point O) with randomizer r′ ∈R Zq. The result is a new,
randomly different cryptogram that contains the same message M . Generating
the new cryptogram e′ = (R′, C ′)← ReEnc(Y, e; r′) is described by algorithm 21.

Algorithm 21: ReEnc(Y, e; r′)

Data: The encryption key Y ∈ P
The initial cryptogram e = (R,C) ∈ E
The new randomizer r′ ∈ Zq

e2 ← Enc(Y,O; r′) // algorithm 18

e′ ← HomAdd(e, e2) // algorithm 20

return e′ // e′ ∈ E

Usually, a re-encrypted cryptogram comes with a re-encryption proof to as-
sure that the content of the cryptogram has not been changed. The proof is a
non-interactive discrete logarithm equality proof (described in appendix A.3.1)
PK = (K, c, r)← DLProve(r′, {G, Y }) (algorithm 15), while the proof verifica-
tion algorithm is DLVer(PK, {G, Y }; {R′ −R,C ′ − C}) (algorithm 16).

Naturally, cryptogram addition can be expanded to multiplication to achieve
the fact that Enc(Y,M ; r)+Enc(Y,M ; r) = 2 ·Enc(Y,M ; r) = Enc(Y, [2]M ; 2 ·r).
The resulting encryption of the homomorphic multiplication of a cryptogram is
e′ = (R′, C ′)← HomMul(e;n) (algorithm 22).

Algorithm 22: HomMul(e;n)

Data: The initial cryptogram e = (R,C) ∈ E
The multiplication factor n ∈ Z

R′ ← [n]R
C′ ← [n]C
e′ ← (R′, C′)
return e′ // e′ ∈ E

A.5.3 Threshold Cryptosystem

A t out of n threshold cryptosystem is a homomorphic encryption scheme where
the decryption key is split among n key holders, called trustees T = {T1, ..., Tn}.
Anybody can encrypt a message using the encryption key. The decryption of a
message happens during a process in which at least t trustees have to collaborate
in a cryptographic protocol. It is recommended that t ≥ 2/3 · n. The entire
scheme was introduced in [8], which is based on mathematical principles of the
threshold cryptosystem [9, 10].

The key generation process concludes with the following (sx1, ..., sxn, Y ), where
Y is the public encryption key, and each sxi is a private share of the decryption
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key, one for each of the n trustees. The process is performed by all trustees
while being facilitated by a central entity called the server. The entire process
is described by the protocol called the threshold ceremony illustrated in figure 12.

During the threshold ceremony, each trustee Ti ∈ T generates a private-public
key pair (xi, Yi) ← KeyGen() (algorithm 17) and publishes the public key to
the server. The public encryption key is computed by the sum of the public
keys of all trustees Y =

∑n
i=1 Yi, while nobody knowing the decryption key

x =
∑n
i=1 xi because all xi are secret. Instead, all trustees work together to

distribute x such that any t trustees can find it when necessary.

Each trustee Ti ∈ T generates a polynomial function of degree t− 1

fi(z) = xi + pi,1 · z + ...+ pi,t−1 · zt−1

and publishes to the server the points {Pi,1, ..., Pi,t−1}, where each private-public
coefficient pair is (pi,k, Pi,k)← KeyGen() (algorithm 17), with k ∈ {1, ..., t− 1}.

When all public coefficients have been published, each trustee Ti ∈ T computes
a partial secret share of the decryption key for each of the other trustees by
si,j ← fi(j), where j ∈ {1, ..., n}. Then, Ti encrypts each partial secret share
with a key derived from the Diffie-Hellman key exchange mechanism with each
of the other trustees’ public keys, i.e., ci,j ← SymEnc(ki,j , si,j) (algorithm 23),
where ki,j ← DerSymKey(xi, Yj) (algorithm 36). Finally, all trustees publish to
the server all encrypted partial secret shares of the decryption key.

By encrypting the partial secret shares with each trustee’s public keys, we ensure
that only that specific trustee can read his partial secret shares of the decryption
key. This procedure is a slight deviation from [8], which we introduced to
simulate a private communication channel between trustees.

Finally, each trustee Ti ∈ T downloads from the server their encrypted partial
secret shares cj,i, with j ∈ {1, ..., n} and decrypts them sj,i ← SymDec(ki,j , cj,i)
(algorithm 24), where ki,j ← DerSymKey(xi, Yj) (algorithm 36). Recall form
appendix A.9.2 that ki,j = kj,i as DerSymKey(xi, Yj) = DerSymKey(xj , Yi),
when Yi = [xi]G and Yj = [xj ]G.

Then, each trustee Ti ∈ T validates that the partial secret shares generated by
all the other trustees are consistent with their respective polynomial coefficients
[sj,i]G = Yj +

∑t−1
k=1[i

k]Pj,k, with j ∈ {1, ..., n}. If all partial secret shares
validate, then trustee Ti computes his secret share of the decryption key by
sxi ←

∑n
j=1 sj,i and stores it privately until needed for decryption. At the

end of the threshold ceremony, for each trustee Ti ∈ T , the public share of the
decryption key (sYi = [sxi]G) is publicly computable by the following:

sYi ←
n∑
j=1

(Yj +

t−1∑
k=1

[ik]Pj,k).

The encryption algorithm of the threshold cryptosystem is identical to the al-
gorithm described in appendix A.5.1: e = (R,C)← Enc(Y,M ; r).
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Server Trustee Ti

Y⃗ ← {}, ⃗⃗P ← {}, ⃗⃗c← {}
invitation

(xi, Yi)← KeyGen()
Yi

Y⃗ ← Y⃗ ∪ {Yi}

when all Ti have published Yi

set t ∈ [ 2
3
n, ..., n]

t, Y⃗ = {Y1, ..., Yn}

(pi,k, Pi,k)← KeyGen(), with k ∈ {1, ..., t− 1}

fi(a) = xi +
t−1∑
k=1

pi,k · ak (mod q)

si,j ← fi(j), with j ∈ {1, ..., n}
ki,j ← DerSymKey(xi, Yj)
ci,j ← SymEnc(ki,j , si,j)

Pi,k, ci,j

⃗⃗
P ← ⃗⃗

P ∪ {Pi,k}, with k ∈ {1, ..., t− 1}
⃗⃗c← ⃗⃗c ∪ {ci,j}, with j ∈ {1, ..., n}

when all Ti have published Pi,k and ci,j

⃗⃗
P = {P1,1, ..., Pn,t−1}, {c1,i, ..., cn,i}

sj,i ← SymDec(ki,j , cj,i), with j ∈ {1, ..., n}

verify that [sj,i]G = Yj +
t−1∑
k=1

[ik]Pj,k then:

sxi ←
n∑
j=1

sj,i (mod q)

validation

when all Ti have validated

Y ←
n∑
i=1

Yi

Figure 12: Threshold ceremony
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The decryption protocol of the threshold cryptosystem is inspired by paper [9].
At least t trustees are needed to collaborate in the protocol described in figure 13
to extract the message M of a cryptogram e = (R,C). We define τ ⊂ {1, ..., n}
as the subset of trustees participating in the decryption protocol, with |τ | ≥ t.

Each trustee Ti, with i ∈ τ , computes a partial decryption Si ← [sxi]R and sends
it to the server, where sxi is trustee’s share of the decryption key. The trustee
also publishes a proof of correct decryption in the form of a non-interactive
discrete logarithm zero-knowledge proof PK ← DLProve(sxi, {G,R}) (algo-
rithm 15).

When receiving a partial decryption from a trustee Ti, the server accepts it if
the proof of correct decryption validates by DLVer(PK, {G,R}, {sYi, Si}) (al-
gorithm 16), where sYi is trustee’s public share of the decryption key. After it
received valid, partial decryptions from all trustees Ti, with i ∈ τ , the server ag-
gregates all partial decryptions together to finalize the decryption and to output
the message M . The aggregation process from [9] is described as follows:

Basically, M = C − [x]R, where x is the main decryption key that nobody
has. A possible way of computing [x]R is by calculating the Lagrange In-
terpolation Polynomial where each term is a partial decryption Si received
from a trustee Ti that needs to be multiplied by the Lagrange Interpolation
Polynomial coefficient which is λ(i) =

∏
j∈τ,j ̸=i

−j
i−j (mod q). Formally, M ←

C −
∑
i∈τ [λ(i)]Si, with |τ | ≥ t. Note that the Lagrange Interpolation Polyno-

mial can be computed only when the number of terms is at least the degree of
the polynomial, i.e., |τ | ≥ t.

Server Trustee Ti
internal knowledge: e = (R,C),

{sY1, ..., sYn}
internal knowledge: sxi

τ ← {} e = (R,C)

Si ← [sxi]R
PK ← DLProve(sxi, {G,R})Si, PK

verify DLVer(PK, {G,R}, {sYi, Si}) then:

τ ← τ ∪ {i}

when enough Ti have published Si, i.e. |τ | ≥ t

λ(i)←
∏

j∈τ,j ̸=i

−j
i−j (mod q), with i ∈ τ

M ← C −
∑
i∈τ [λ(i)]Si

Figure 13: Threshold decryption
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A.5.4 Proving the Content of a Cryptogram

Once a cryptogram is generated e = (R,C) ← Enc(Y,M ; r), only the sender
(the one who generated the cryptogram) and the receiver (the one in possession
of the decryption key x) know the value of the message M . Both of them have
the possibility to prove to somebody else (or publicly prove) the content of the
cryptogram.

The one who generated the cryptogram can prove to a verifier that the cryp-
togram e contains messageM by engaging in the protocol from figure 11 to prove
the knowledge of the randomizer PK[(r) : R = [r]G∧(C−M) = [r]Y ]. To gener-
ate a publicly verifiable proof, the sender can generate a non-interactive proof
PK ← DLProve(r, {G, Y }) (algorithm 15). Any public verifier is convinced
that cryptogram e contains message M if the verification algorithm succeeds
DLVer(PK, {G, Y }; {R,C −M}) (algorithm 16).

At the same time, the one in possession of the decryption key x can prove
the content of the cryptogram e to a verifier by engaging in the same proto-
col from figure 11 but this time for proving the knowledge of the decryption
key PK[(x) : Y = [x]G ∧ (C − M) = [x]R]. To generate a publicly verifi-
able proof, the receiver of the cryptogram can generate a non-interactive proof
PK ← DLProve(x, {G,R}) (algorithm 15). Any public verifier is convinced
that cryptogram e contains message M if the verification algorithm succeeds
DLVer(PK, {G,R}; {Y,C −M}) (algorithm 16).

A.5.5 Symmetric encryption

A particular encryption scheme (SymEnc, SymDec) exists in case the message
to be encrypted is not an elliptic curve point but, instead, an arbitrary length
message m ∈ B∗, e.g., a text message. A difference from Elgamal cryptography
is that both encryption and decryption are done based on the same key that
needs to be known by both parties (i.e., the sender and the receiver).

The strategy to convert from a private-public key infrastructure into a sym-
metric key is to use a key encapsulation method based on Diffie Hellman Key
Exchange as described in appendix A.9.2. Then, the symmetric key k is used
to encrypt the message m using a standard AES encryption algorithm [11],
resulting in the encryption e ← SymEnc(k,m) (algorithm 23). For decryp-
tion, the same symmetric key is derived and then used to decrypt the message
m← SymDec(k, e) (algorithm 24).

We use AES algorithms with 256-bit keys in Galois Counter Mode with a ran-
dom 96-bit initialization vector iv, no authentication data (i.e., ad ← ∅), and
a 128-bit tag t. Therefore, we define algorithm AES− GCM− Encrypt that re-
turns the ciphertext c representing the encryption of message m with the key k
after the AES-GCM cipher has been initialized with the initialization vector iv.
Additionally, it returns tag t that authenticates the encryption. We consider as
the encryption of message m the tuple e = (iv, t, c).
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We also define algorithm AES− GCM− Decrypt that returns plain textm as the
decryption of ciphertext c with key k after initializing the AES-GCM cipher with
the initialization vector iv. Note that m is returned only if the authentication
tag t validates.

Algorithm 23: SymEnc(k,m)

Data: The symmetric key k ∈ B256

The message m ∈ B∗

iv ∈R B96

ad← ∅
tl← 128
(c, t)← AES− GCM− Encrypt(k,m, iv, ad, tl)
e← (iv, t, c)
return e // e ∈ B96 × B128 × B∗

Algorithm 24: SymDec(k, e)

Data: The symmetric key k ∈ B256

The encryption e = (iv, t, c) ∈ B96 × B128 × B∗

ad← ∅
m← AES− GCM− Decrypt(k, c, iv, ad, t)
if m = failure then

return failure // invalid authentication tag

else
return m // m ∈ B∗

end

A.6 Schnorr digital signature

The Schnorr digital signature scheme, introduced in [12], consists of a triple of al-
gorithms (KeyGen, Sign, SigVer), which are based on elliptic curve cryptographic
primitive. A Schnorr key pair is a tuple (x, Y ) ← KeyGen() (algorithm 17),
where x is the random, private signing key and Y is the corresponding public
signature verification key.

Only the owner of the private signing key is able to generate a valid signature
σ = (c, s) ← Sign(x,m), on an arbitrary message m ∈ B∗. To generate a
signature, the signer follows algorithm 25. Given a signature σ on a message m,
anybody in possession of the public verification key Y can verify the validity of
the signature b ← SigVer(Y, σ;m), with b ∈ B which represents true or false.
The signature verification algorithm is described in algorithm 26.
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Algorithm 25: Sign(x,m)

Data: The signing key x ∈ Zq
The message to be signed m ∈ B∗

r ∈R Zq
K ← [r]G
c← H(K||m)
s← r − c · x (mod q)
σ ← (c, s)
return σ // σ ∈ Zq × Zq

Algorithm 26: SigVer(Y, σ;m)

Data: The signature verification key Y ∈ P
The signature σ = (c, s) ∈ Zq × Zq
The signed message m ∈ B∗

K ← [s]G+ [c]Y
if c = H(K||m) then

b← 1 // signature is valid

else
b← 0 // signature is invalid

end
return b // b ∈ B

A.7 Pedersen commitment scheme

A commitment scheme consists of a tuple of algorithms (Com, ComVer) that
enables a writer to commit to a specific message m while keeping it secret. At
a later point, if appropriate, the writer can open the commitment and reveal
the committed message m. The Pedersen Commitment Scheme is a randomized
commitment scheme introduced in [13]. Later, the scheme has been updated in
[14] to enable commitment computation on a list of messages m⃗ = {m1, ...,mn},
where each mi ∈ Zq, with i ∈ {1, ..., n}.

A prerequisite part of the commitment scheme is the existence of multiple gener-
ators (one for each message in the list m⃗) in the subgroup such that the discrete
logarithm amongst any two of them is unknown. To support that, we define
the algorithm BaseGen that outputs a new generator H such that the value x is
unknown where H = [x]G.

In order to commit to messages m⃗ = {m1, ...,mn} a writer computes the com-
mitment C ← Com(m⃗; r) (algorithm 28), where r ∈R Zq is a randomizer. The

algorithm internally computes a list of generators G⃗ = {G1, ..., Gn} where each
Gi ← BaseGen(i) (algorithm 27), with i ∈ {1, ..., n}.

To reveal messages m⃗, the writer needs to publish values m⃗ and r. A verifier
is convinced that the commitment C opens to messages m⃗ by running b ←
ComVer(C, m⃗; r) (algorithm 29).
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Algorithm 27: BaseGen(i)

Data: An index i ∈ N
j ← 0
repeat

x← H(G||i||j)
y ← RecoverY(x, 02) // algorithm 9

if y is invalid then
j ← j + 1
continue

end
H ← (x, y)
if H is invalid then

j ← j + 1
continue

end

until H is valid
return H // H ∈ P

Algorithm 28: Com(m⃗; r)

Data: The list of messages m⃗ = {m1, ...,mn} ∈ Znq
The randomizer r ∈ Zq

for i← 1 to n by 1 do
Gi ← BaseGen(i) // algorithm 27

end

C ← [r]G+
n∑
i=1

[mi]Gi

return C // C ∈ P

Algorithm 29: ComVer(C, m⃗; r)

Data: The commitment C ∈ P
The list of messages m⃗ = {m1, ...,mn} ∈ Znq
The randomizer r ∈ Zq

for i← 1 to n by 1 do
Gi ← BaseGen(i) // algorithm 27

end

if C = [r]G+
n∑
i=1

[mi]Gi then

b← 1 // commitment is valid

else
b← 0 // commitment is invalid

end
return b // b ∈ B
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A.8 Groth’s argument of shuffle

A cryptographic shuffle (or mixing) is a process that, given as input a list of
cryptograms, outputs another list of cryptograms such that each cryptogram
from the input list is re-encrypted and permuted in a random new order, forming
the output list. This can be further extended tomixing a matrix of cryptograms,
where all cryptograms are re-encrypted, and rows are permuted in a new order.
Formally, given a matrix of cryptograms ⃗⃗e = {e1,1, ..., en,ℓ} ∈ En,ℓ, with each
ei,j = (Ri,j , Ci,j), i ∈ {1, ..., n} and j ∈ {1, ..., ℓ}, a matrix of randomizers
⃗⃗r = {r1,1, ..., rn,ℓ} ∈ Zn×ℓq and a permutation ψ : {1, ..., n} ← {1, ..., n} from
the set Ψn of all permutations of n elements, the shuffle algorithm outputs
the matrix ⃗⃗e ′ = {e′1,1, ..., e′n,ℓ} ← Shuffle(Y, ⃗⃗e; ⃗⃗r, ψ) (algorithm 30) where each
e′i,j = (R′i,j , C

′
i,j)← ReEnc(Y, ek,j ; ri,j) (algorithm 21) for k = ψ(i).

Algorithm 30: Shuffle(Y, ⃗⃗e, ⃗⃗r, ψ)

Data: The encryption key Y ∈ P
The matrix of initial cryptograms ⃗⃗e = {e1,1, ..., en,ℓ} ∈ En×ℓ

The matrix of randomizers ⃗⃗r = {r1,1, ..., rn,ℓ} ∈ Zn×ℓq

The permutation ψ ∈ Ψn
for i← 1 to n by 1 do

for j ← 1 to ℓ by 1 do
e′i,j ← ReEnc(Y, eψ(i),j ; ri,j) // algorithm 21

end

end
⃗⃗e ′ ← {e′1,1, ..., e′n,ℓ}
return ⃗⃗e ′ // ⃗⃗e ′ ∈ En×ℓ

The interesting aspect of mixing is how to prove in zero-knowledge that the
shuffling calculations were done correctly and that no content of the cryptograms
has been changed. Our mixing proof is based on an algorithm presented by
Jens Groth in [15]. The proof uses as a building block an Argument for Shuffle
of Known Contents, which is based on proving the knowledge of opening a
commitment to a permutation of a set of known messages. The strategy of
Groth’s algorithm is to reduce the problem of proving that ⃗⃗e ′ is the shuffled list
of re-encrypted cryptograms ⃗⃗e to the problem of proving the shuffling of some
known messages where the same permutation ψ is applied.

The protocol for the Argument of Shuffle of Known Contents is presented in
figure 14. During this protocol, the Prover convinces the Verifier that C is a
commitment to a set of known messages m⃗ = {m1, ...,mn} that are shuffled by
a secret permutation ψ. Note that, in this protocol, the Prover does not reveal
the permutation ψ.

The protocol for proving the correctness of a shuffle is illustrated in figure 15.
The Prover convinces the Verifier that the matrix of mixed cryptograms ⃗⃗e ′ =
{e′1,1, ..., e′n,ℓ} is equivalent to the initial cryptograms matrix ⃗⃗e = {e1,1, ..., en,ℓ},
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where each cryptogram is re-encrypted, and rows of the initial matrix are shuf-
fled amongst each other. Note that, during mixing, the integrity of each row is
preserved, i.e., all columns of the matrix are shuffled by the same permutation.
The protocol uses, as a building block, the protocol for the Argument of Shuffle
of Known Contents, presented in figure 14.

Note that, in the description of the protocols, we abuse notation and define∑n
i=1 ei = HomAdd(e1;HomAdd(e2; ...HomAdd(en−1; en)...)) (algorithm 20) as

the homomorphic addition of multiple cryptograms, with each ei ∈ E.

Jens Groth suggests in [15] that the protocols can be turned into non-interactive
algorithms by using the Fiat-Shamir heuristic strategy [6] to compute the ran-
dom value x, e, t⃗ and λ by applying a hash function to the transcript of the
protocol. Therefore, we transform each protocol into a set of two algorithms
(one for generating a universally verifiable non-interactive proof and another for
verifying it).

Explicitly, to prove the correct mixing of cryptograms ⃗⃗e = {e1,1, ..., en,ℓ} by

randomizers ⃗⃗r = {r1,1, ..., rn,ℓ} and permutation ψ into the mixed cryptograms
⃗⃗e ′ = {e′1,1, ..., e′n,ℓ}, the Prover generates the tuple (proof of mixing and ar-

gument of shuffle) (PM,AS) ← MixProve(ψ, Y, ⃗⃗r, ⃗⃗e, ⃗⃗e ′) (algorithm 33), where
Y is the encryption key. Anybody can universally verify a proof of mixing by
MixVer(PM,AS, Y, ⃗⃗e, ⃗⃗e ′) (algorithm 34).
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Prover Verifier

internal knowledge: ψ, r, m⃗ = {m1, ...,mn},
C = Com({mψ(1), ...,mψ(n)}; r)

internal knowledge: C,
m⃗ = {m1, ...,mn}

x ∈R Zq
x

ra ∈R Zq, rd ∈R Zq rδ ∈R Zq
d⃗ = {d1, ..., dn} ∈R Znq
δ1 ← d1, {δ2, ..., δn−1} ∈R Zn−2

q , δn ← 0

ai ←
i∏

j=1

(mψ(j) − x) (mod q), with i ∈ {1, ..., n}

uj ← −δj · dj+1 (mod q), with j ∈ {1, ..., n− 1}
vj ← δj+1 − (mψ(j+1) − x) · δj − aj · dj+1 (mod q)
u⃗← {u1, ..., un−1}, v⃗ ← {v1, ..., vn−1}
Cd ← Com(d⃗; rd), Cδ ← Com(u⃗; rδ), Ca ← Com(v⃗; ra)

Cd, Cδ, Ca

e ∈R Zq
e

z ← e · r + rd (mod q)
zδ ← e · ra + rδ (mod q)
fi ← e ·mψ(i) + di (mod q), with i ∈ {1, ..., n}
f ′
j ← e · (δj+1 − (mψ(j+1 − x) · δj − aj · dj+1)− δj · dj+1 (mod q),
with j ∈ {1, ..., n− 1}

z, f⃗ = {f1, ..., fn},
zδ, f⃗

′ = {f ′
1, ..., f

′
n−1}

ϕ1 ← f1 − e · x (mod q)

ϕi ←
ϕi−1 · (fi − e · x) + f ′

i−1

e
(mod q),

with i ∈ {2, ..., n}

verify that
[e]C + Cd = Com(f⃗ ; z),

[e]Ca + Cδ = Com(f⃗ ′; zδ) and

ϕn = e ·
n∏
i=1

(mi − x) (mod q)

Figure 14: Argument of Shuffle of Known Contents
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Prover Verifier

internal knowledge: ψ, Y , ⃗⃗r = {r1,1, ..., rn,ℓ},
⃗⃗e = {e1,1, ..., en,ℓ}, ⃗⃗e ′ = {e′1,1, ..., e′n,ℓ},

with e′i,j = ReEnc(Y, eψ(i),j ; ri,j)

internal knowledge: Y ,
⃗⃗e = {e1,1, ..., en,ℓ},
⃗⃗e ′ = {e′1,1, ..., e′n,ℓ}

rp ∈R Zq, rd ∈R Zq, r⃗e = {re,1, ..., re,ℓ} ∈R Zℓq
d⃗ = {d1, ..., dn} ∈R Znq
p⃗← {ψ(1), ..., ψ(n)}
C ← Com(p⃗; rp), Cd ← Com(d⃗; rd)

ē ′+
j ←

n∑
i=1

ē ′
i,j , with ē

′
i,j ← HomMul(e′i,j ; di), with j ∈ {1, ..., ℓ}

ed,j ← ReEnc(Y, ē ′+
j ; re,j)

C, Cd, e⃗d = {ed,1, ..., ed,ℓ}

t⃗ = {t1, ..., tn} ∈R Znq
t⃗ = {t1, ..., tn}

fi ← tψ(i) − di (mod q), with i ∈ {1, ..., n}

zj ← re,j +
n∑
i=1

tψ(i) · ri,j (mod q), with j ∈ {1, ..., ℓ}

f⃗ = {f1, ..., fn}, z⃗ = {z1, ..., zℓ}

λ ∈R Zq
λ

run the protocol from figure 14 to prove knowledge that C′ = [λ]C + Cd + Com(f⃗ ; 0)
is a commitment to messages m⃗ = {λ · i+ ti, ..., λ · n+ tn} shuffled by permutation ψ.

ẽ+
j ←

n∑
i=1

ẽi,j , with ẽi,j ← HomMul(ei,j ; ti)

ẽ ′+
j ←

n∑
i=1

ẽ ′
i,j , with ẽ

′
i,j ← HomMul(e′i,j ; fi)

verify that
HomAdd(ẽ ′+

j ; ed,j) = ReEnc(Y, ẽ+
j ; zj),

with j ∈ {1, ..., ℓ}

Figure 15: Argument of Shuffle of Cryptograms
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Algorithm 31: ASKCProve(ψ; r; m⃗;C)

Data: The permutation ψ ∈ Ψn
The randomizer r ∈ Zq
The list of known messages m⃗ = {m1, ...,mn} ∈ Znq
The public commitment C ∈ P

x← H(m⃗||C)
ra ∈R Zq, rd ∈R Zq rδ ∈R Zq
for i← 1 to n by 1 do

di ∈R Zq

ai ←
i∏

j=1

(mψ(j) − x) (mod q)

end
δ1 ← d1, δn ← 0
for i← 2 to n− 1 by 1 do

δi ∈R Zq
end
for i← 1 to n− 1 by 1 do

ui ← −δi · di+1 (mod q)
vi ← δi+1 − (mψ(i+1) − x) · δi − ai · di+1 (mod q)

end

d⃗← {d1, ..., dn}, u⃗← {u1, ..., un−1}, v⃗ ← {v1, ..., vn−1}
Cd ← Com(d⃗; rd), Cδ ← Com(u⃗; rδ), Ca ← Com(v⃗; ra) // algorithm 28

e← H(m⃗||C||Cd||Cδ||Ca)
z ← e · r + rd (mod q), zδ ← e · ra + rδ (mod q)
for i← 1 to n by 1 do

fi ← e ·mψ(i) + di (mod q)
end
for i← 1 to n− 1 by 1 do

f ′
i ← e · (δi+1 − (mψ(i+1 − x) · δi − ai · di+1)− δi · di+1 (mod q)

end

f⃗ ← {f1, ..., fn}, f⃗ ′ ← {f ′
1, ..., f

′
n−1}

AS ← (Cd, Cδ, Ca, x, e, z, zδ, f⃗ , f⃗
′)

return AS // AS ∈ P3 × Z4
q × Znq × Zn−1

q
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Algorithm 32: ASKCVer(AS; m⃗;C)

Data: The argument AS = (Cd, Cδ, Ca, x, e, z, zδ, f⃗ , f⃗
′) ∈ P3×Z4

q ×Znq ×Zn−1
q

The list of known messages m⃗ = {m1, ...,mn} ∈ Znq
The public commitment C ∈ P

ϕ1 ← f1 − e · x (mod q)
for i← 2 to n by 1 do

ϕi ←
ϕi−1 · (fi − e · x) + f ′

i−1

e
(mod q)

end
if x = H(m⃗||C) and e = H(m⃗||C||Cd||Cδ||Ca)

and ϕn = e ·
n∏
i=1

(mi − x) (mod q)

and [e]C + Cd = Com(f⃗ ; z) and [e]Ca + Cδ = Com(f⃗ ′; zδ) // algorithm 28

then
b← 1 // argument is valid

else
b← 0 // argument is invalid

end
return b // b ∈ B
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Algorithm 33: MixProve(ψ, Y, ⃗⃗r, ⃗⃗e, ⃗⃗e ′)

Data: The permutation ψ ∈ Ψn
The encryption key Y ∈ P
The matrix of randomizers ⃗⃗r = {r1,1, ..., rn,ℓ} ∈ Zn×ℓq

The matrix of initial cryptograms ⃗⃗e = {e1,1, ..., en,ℓ} ∈ En×ℓ

The matrix of mixed cryptograms ⃗⃗e ′ = {e′1,1, ..., e′n,ℓ} ∈ En×ℓ, with
e′i,j = ReEnc(Y, eψ(i),j ; ri,j)

rp ∈R Zq, rd ∈R Zq
for i← 1 to n by 1 do

di ∈R Zq, pi ← ψ(i)
for j ← 1 to ℓ by 1 do

ē′i,j ← HomMul(e′i,j ; di) // algorithm 22

end

end

d⃗← {d1, ..., dn}, p⃗← {p1, ..., pn}
C ← Com(p⃗; rp), Cd ← Com(d⃗; rd) // algorithm 28

for j ← 1 to ℓ by 1 do
re,j ∈R Zq

ed,j ← ReEnc(Y, ē ′+
j ; re,j), with ē

′+
j ←

n∑
i=1

ē ′
i,j // algorithm 21

end
e⃗d ← {ed,1, ..., ed,ℓ}
for i← 1 to n by 1 do

ti ← H(⃗⃗e ||⃗⃗e ′||C||Cd||e⃗d||i)
end
for i← 1 to n by 1 do

fi ← tψ(i) − di (mod q)
end

f⃗ ← {f1, ..., fn}
for j ← 1 to ℓ by 1 do

zj ← re,j +
n∑
i=1

tψ(i) · ri,j (mod q)

end
z⃗ ← {z1, ..., zℓ}
λ← H(⃗⃗e ||⃗⃗e ′||C||Cd||e⃗d||f⃗ ||z⃗)
for i← 1 to n by 1 do

m′
i ← λ · ψ(i) + tψ(i)

end
m⃗′ ← {m′

1, ...,m
′
n}, r′ ← λ+ rd (mod q)

C′ ← Com(m⃗′; r′) // algorithm 28

AS ← ASKCProve(ψ; r′; m⃗′;C′) // algorithm 31

PM ← (C,Cd, e⃗d, t⃗, f⃗ , z⃗, λ)

return (PM,AS) // PM ∈ P2 × Eℓ × Z2n
q × Zℓq × Zq

// AS ∈ P3 × Z4
q × Znq × Zn−1

q
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Algorithm 34: MixVer(PM,AS, Y, ⃗⃗e, ⃗⃗e ′)

Data: The proof PM = (C,Cd, e⃗d, t⃗, f⃗ , z⃗, λ) ∈ P2 × Eℓ × Z2n
q × Zℓq × Zq

The argument of shuffle AS ∈ ×P3 × Z4
q × Znq × Zn−1

q

The encryption key Y ∈ P
The matrix of initial cryptograms ⃗⃗e = {e1,1, ..., en,ℓ} ∈ En×ℓ

The matrix of mixed cryptograms ⃗⃗e ′ = {e′1,1, ..., e′n,ℓ} ∈ En×ℓ
for i← 1 to n by 1 do

for j ← 1 to ℓ by 1 do
ẽi,j ← HomMul(ei,j ; ti) // algorithm 22

ẽ ′
i,j ← HomMul(e′i,j ; fi) // algorithm 22

end
mi ← λ · i+ ti (mod q)

end
for j ← 1 to ℓ by 1 do

ẽ+
j ←

n∑
i=1

ẽi,j

ẽ ′+
j ←

n∑
i=1

ẽ ′
i,j

end

C′ ← [λ]C + Cd + Com(f⃗ ; 0) // algorithm 28

m⃗← {m1, ...,mn}
if ti = H(⃗⃗e ||⃗⃗e ′||C||Cd||e⃗d||i), where i ∈ {1, ..., n}
and λ = H(⃗⃗e ||⃗⃗e ′||C||Cd||e⃗d||f⃗ ||z⃗ )
and HomAdd(ẽ ′+

j ; ed,j) = ReEnc(Y, ẽ+
j ; zj), where j ∈ {1, ..., ℓ}

and ASKCVer(AS; m⃗;C′) // algorithms 20, 21 and 32

then
b← 1 // proof is valid

else
b← 0 // proof is invalid

end
return b // b ∈ B
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A.9 Key derivation

Key derivation functions are algorithms that convert one source of randomness
and secrecy (such as private keys or passwords) into different formats that can
be used in different applications.

A.9.1 Password-based key derivation function

PBKDF2 is a standard algorithm, described in [16], that converts passwords
(arbitrary text) into keys that can be used in a cryptographic context. The
algorithm takes as arguments a pseudorandom function, a password, a salt, an
iteration count, and the desired length of the output key in bytes.

We use PBKDF2 as a building block for Pass2Key(m) (algorithm 35) that con-
verts password m into a key pair (x, Y ). This can be seen as an alternative
algorithm to KeyGen() (algorithm 17) that can be used to get a deterministic
key pair based on some random seed.

Particularly, no salt is used (i.e., salt is set to ∅), therefore, only one key pair
can be derived from password m. The amount of iterations is set to 600.000,
according to recommendations from [17]. The password is concatenated with a
counter that gets incremented until the output of the key derivation function
can be interpreted as a correct private key (i.e., the output bytes are decoded
as integer x, then checked whether x ∈ Zq).

Algorithm 35: Pass2Key(m)

Data: A text m ∈ B∗

salt← ∅
iterations← 600.000
ℓ← ByteLengthOf(q) // algorithm 14

i← 0
repeat

x← PBKDF2(H,m||i, salt, iterations, ℓ)
if x ≥ q then

i← i+ 1
continue

end

until x < q
Y ← [x]G
return (x, Y ) // (x, Y ) ∈ Zq × P
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A.9.2 Diffie Hellman key derivation function

To use symmetric encryption for encrypting arbitrary amounts of data, a sym-
metric key needs to be derived from a private-public key environment. Algo-
rithm DerSymKey(x1, Y2) (algorithm 36) deterministically computes a 256-bit
symmetric key k ∈ B256, given a private key and a public key that are not
related (i.e., Y2 ̸= [x1]G).

For two entities that have a private-public key infrastructure in place (i.e., entity
1 has key pair (x1, Y1) and entity 2 has key pair (x2, Y2), where Y1 = [x1]G
and Y2 = [x2]G) and that know each other (i.e., entity 1 knows Y2 and entity 2
knows Y1), they can both derive symmetric key k by running DerSymKey(x1, Y2)
as entity 1 and DerSymKey(x2, Y1) as entity 2.

The algorithm performs a Diffie Hellman key exchange to reach a shared secret
S ← [x1]Y2 = [x2]Y1 = [x1 + x2]G. The resulting value is used as the keying
material of a hash-based key derivation function HKDF (described in [18]) to
convert it into a uniform key k. Particularly, no salt and info arguments are
used (i.e., salt and info are set to ∅), therefore only one symmetric key can be
derived from two particular key pairs (x1, Y1) and (x2, Y2).

Algorithm 36: DerSymKey(x, Y )

Data: A private key x ∈ Zq
A public key Y ∈ P

salt← ∅
info← ∅
length← 256
S ← [x]Y
k ← HKDF(S, salt, info, length)
return k // k ∈ B256
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B Bulletin board item types

All item types that can appear on the bulletin board are described in the following list and are grouped into the following four
categories:

Configuration items

Item Writer Content Parent type Validation rules

genesis D elliptic curve domain parameters
(p, a, b,G, q, h),
digital ballot box public key YD,
election admin public key YE

none It is the first item on the board.

election
configuration

E election title,
enabled languages

latest
configuration
item

The first item defines the configuration.
The following items update the configura-
tion.

contest
configuration

E contest identifier,
contest marking rules, question
type, and result rules,
candidate labels {m1, ...,mnc}

latest
configuration
item

The first item with a contest identifier de-
fines the configuration of that contest.
The following items with the same contest
identifier update the configuration of that
specific contest.

threshold
configuration

E ballot encryption key Yenc,
threshold setup t out-of nt,
trustees public keys {YT1 , ..., YTnt

},
trustees public polynomial
coefficients {PT1,1, ..., PTnt ,t−1}

latest
configuration
item

This item cannot be updated.
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Item Writer Content Parent type Validation rules

actor
configuration

E actor identifier,
actor role,
actor public key

latest
configuration
item

The first item with an actor identifier de-
fines the configuration of that actor.
The following items with the same actor
identifier update the configuration of that
specific actor.
The role can be: Voter Authorizer A.

voter
authorization
configuration

A the voter authorization mode,
configuration of all Identity
Providers {I1, ..., Ini

}

latest
configuration
item

The first item defines the voter authoriza-
tion configuration.
The following items update the configura-
tion.
The configuration of Identity Providers is
included only if voter authorization mode
is identity-based.

voting round E voting round identifier,
start date and end date,
list of enabled contest identifiers

latest
configuration
item

The first item with a voting round identi-
fier defines the configuration of that vot-
ing round.
The following items with the same voting
round identifier update the configuration
of that specific voting round.
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Voting items

Item Writer Content Parent type Validation rules

voter session A voter identifier,
voter public key Yi,
voter weight,
voter authentication fingerprint
list of assigned contest identifiers

latest
configuration
item

This item can be created only during the
election phase.
The following voter session items with the
same voter identifier overwrite the previ-
ous voter sessions of that voter.

voter
encryption
commitment

Vi commitment cv the voter
session item

The voter’s public key Yi is defined in the
voter session item.

server
encryption
commitment

D commitment cd the voter
encryption
commitment
item

Only one server encryption commitment
item can reference the voter encryption
commitment item.
This item is created in response to the
voter encryption commitment item being
published.

ballot
cryptograms

Vi cryptograms e⃗i the server
encryption
commitment
item

Only one ballot cryptograms item can ref-
erence the server encryption commitment
item.
The voter’s public key Yi is defined in the
voter session item.
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Item Writer Content Parent type Validation rules

cast request Vi the ballot
cryptograms
item

There can be either a cast request or a
spoil request item referencing the ballot
cryptograms item.
The voter’s public key Yi is defined in the
voter session item.

spoil request Vi the ballot
cryptograms
item

There can be either a cast request or a
spoil request item referencing the ballot
cryptograms item.
The voter’s public key Yi is defined in the
voter session item.
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Hidden items

Item Writer Content Parent type Validation rules

verification
track start

D the ballot
cryptograms
item

Only one verification track start item can
reference the ballot cryptograms item.
This item is created in response to the
ballot cryptograms item being published.

verifier X external verifier’s public key YX the
verification
track start
item

This is a self-signed item, i.e., the author’s
public key is defined in the item itself.
Only one verifier item can reference the
verification track start item.

voter
commitment
opening

Vi encrypted commitment opening dv the verifier
item

Only one voter commitment opening item
can reference the verifier item.

server
commitment
opening

D encrypted commitment opening dd the voter
commitment
opening item

Only a server commitment opening item
can reference the voter commitment open-
ing item.

105



Result items

Item Writer Content Parent type Validation rules

extraction
intent

E latest config
item

extraction
data

D a fingerprint of the matrix of
cryptograms ⃗⃗e0

the
extraction
intent item

Only one extraction data item can refer-
ence the extraction intent item.
The item provides a way of aquiring the
list ⃗⃗e0 = {e1, ..., ene}.

extraction
confirmation

E list of trustees that participated in
the result ceremony τ ⊂ {1, ..., nt},
fingerprints of each intermediate
mixed boards of cryptograms ⃗⃗ei
and proofs of correct mixing
(PMi, ASi),
fingerprints of each partial

decryption
⃗⃗
Si and proofs of correct

decryption PKi,
signatures from each trustee Ti on
all the fingerprints above, where
i ∈ τ

the
extraction
data item

Only one extraction confirmation item
can reference the extraction data item.
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C Extra features

C.1 Affidavit document extension

C.1.1 General description

The affidavit document extension is an optional feature that introduces an ex-
tra authentication factor for voters in the form of a document hand signed
by the voter. The affidavit is submitted encrypted together with the digital
ballot. Affidavits are manually checked by election officials, which can either
accept or reject them. The affidavit verification process can be done continu-
ously throughout the election phase or as a bulk process before the cleansing
procedure. During the post-election phase, ballots get included in the tally only
if they have been marked as accepted after the affidavit verification process.

The affidavit document comes in the form of a PDF document. It gets encrypted
by the voting application and stored privately by the digital ballot box. Dur-
ing the affidavit verification process, the affidavit is decrypted by the election
administrator service and presented to an election official for assessment.

A fingerprint of the encrypted affidavit is included in the ballot submission,
signed by the voting application, and published on the bulletin board for track-
ability and integrity reasons. The encrypted affidavit is not publicly accessible
on the bulletin board for privacy concerns.

C.1.2 Election protocol modification

In the pre-election phase, the election administrator E generates another key
pair that is used for encrypting/decrypting the affidavit documents (xaff , Yaff)←
KeyGen() (algorithm 17), where xaff is the private key used for decryption and
will be kept secret by the election administrator, and Yaff is the public key
that voters will use to encrypt affidavits. The public key Yaff is included in the
election configuration item. Thus it is publicly accessible on the bulletin board.

During the election phase, a voter Vi must provide the affidavit document to
the voting application. Before publishing the cast request item, as described
in section 3.3.5, the voting application computes the encryption of the affidavit
document ea ← SymEnc(kaff , a) (algorithm 23), where a ∈ B∗ is the byte rep-
resentation of the affidavit document. The symmetric key kaff is derived from
the Diffie-Hellman key exchange mechanism kaff ← DerSymKey(xi, Yaff) (algo-
rithm 36), where xi is the voter’s private key (as in section 3.3.1) and Yaff is the
affidavit public encryption key, defined in the election configuration item.

A fingerprint of the encrypted affidavit (i.e., H(ea)) is included in the content
of the cast request item. The encrypted affidavit is submitted alongside the cast
request item to the digital ballot box, which validates the request and appends
the item on the bulletin board if the fingerprint matches the encrypted affi-
davit. Note that the digital ballot box cannot read the contents of the affidavit
document, as it does not know the affidavit decryption key xaff .
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To perform the affidavit verification process (figure 16), an election official in-
teracts with the election administrator service, which gets the encrypted af-
fidavit ea of the voter Vi, together with the ancestry of items αcr = αcnf ∪
{bvs, bvec, bsec, bbc, bcr} from the digital ballot box. The election administrator
validates the ancestry by AncestryVer(αcr,∅) (algorithm 1), and checks that
ccr = H(ea), where ccr is the content of the cast request item bcr. If all valida-
tions succeed, it decrypts the affidavit by a← SymDec(kaff , ea) (algorithm 24).
The symmetric key is derived by kaff ← DerSymKey(xaff , Yi), where the public
key Yi is defined in the voter session item bvs. Value a is decoded as a PDF file
and rendered to the election official for assessment.

The election official decides whether to accept or reject the affidavit. If ac-
cepted, the election administration E interacts with the digital ballot box to
append a ballot accepted item bba on the bulletin board by running protocol
1 WriteOnBoard(E ,mba, cba, pba), where mba = ”ballot accepted”, the content
is empty, and the parent is the address of the cast request item bcr. If re-
jected, the same interaction happens to append a ballot rejected item bbr by
WriteOnBoard(E ,mbr, cbr, pbr), where mbr = ”ballot rejected”, cbr contains the
rejection reason, and the parent is the address of the cast request item bcr.

Election Administrator E Digital Ballot Box D

internal knowledge: xE , xaff internal knowledge: b = {b1, ..., bk−1},
where αcnf , {bvs, bvec, bsec, bbc, bcr} ⊂ b

ea, αcr = αcnf ∪ {bvs, bvec, bsec, bbc, bcr}

hcr ← the address of bcr,
ccr ← the content of bcr
Y ← the content of bvs

verify AncestryVer(αcr,∅) and ccr = H(ea)

kaff ← DerSymKey(xaff , Y )
a← SymDec(kaff , ea)

Decide validity of affidavit a

E and D perform protocol 1 to write a ballot accepted bba or
ballot rejected item bbr as the kth item of b

Figure 16: Affidavit verification process

The affidavit extension also impacts the cleansing procedure (section 3.4.1), such
that only ballots that have been marked as accepted (i.e., that are followed by
a ballot accepted item) will be included in the initial mixed board.
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C.1.3 Impact on election properties

The affidavit extension impacts the eligibility property of the election system.
This feature acts as an extra authentication step for voters. The authentication
validation is a manual process done by election officials, at a later time than
the ballot submission. Moreover, the election officials’ decisions to accept or
reject affidavits cannot be audited. Therefore, the system achieves the eligibility
property on an extra assumption that the election officials are trustworthy for
the affidavit verification process.

C.2 Multiple result extractions

C.2.1 General description

The multiple result extractions is an optional feature that gives the election
officials the ability to extract partial results during the election phase. The
extracted votes follow the same processes described in section 3.4 i.e., cleansing,
mixing, and decryption. The publication of each partial result is postponed
until after the election phase is closed.

C.2.2 Election protocol modification

The multiple result extractions feature introduces an extra parameter in the
election configuration item, called the extraction threshold te. This allows an
extraction to happen only of more than te ballots. This is important because
the anonymity property of a result is bound to the number of votes being mixed
and decrypted together.

When an election official requests a partial result to be computed, the following
process is followed:

• the election administrator requests a partial result to be computed by in-
teracting with the digital ballot box in WriteOnBoard(E ,mei, cei, pei) (pro-
tocol 1) to publish an extraction intent item bei on the bulletin board,
according to the rules from appendix B,

• the digital ballot box identifies all the valid ballots that have not been

extracted in a previous extraction
⃗⃗
e′ = {e⃗1, ..., e⃗n′

e
}, according to sec-

tion 3.4.1. Then, it checks whether the amount of valid ballots is at least
double the extraction threshold, i.e., n′e ≥ 2 · te. Otherwise, the extraction
is aborted,

• the digital ballot box extracts as the initial mixed board the cryptograms
⃗⃗e0 = {e⃗1, ..., e⃗ne

}, where ne = n′e − te, such that there are te ballots left
unextracted,

• a subset of all trustees Ti, with i ∈ τ and τ ⊂ {1, ..., nt}, collaborate in
the mixing process to anonymize the encrypted ballots, as described in
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section 3.4.2, where nt is the total number of trustees and t ≤ |τ | ≤ nt
(recall from section 3.2.5 that t is threshold decryption value),

• the same subset of trustees collaborate in the decryption process (sec-
tion 3.4.3) of the anonymized votes,

• finally, the election administrator publishes a modified extraction confir-
mation item as described in section 3.4.4, that contains fingerprints of the
mixed boards of cryptograms, proofs, partial decryptions, and proofs of
correct decryption. The item does not include the actual values, so the
partial result is not publicly released.

After the election phase, an election official can request the final partial result
to be computed. This follows the same process as above, only that, this time,
all remaining valid ballots are extracted.

C.2.3 Impact on election properties

Two properties are affected by the multiple result extractions feature, namely
privacy, and anonymity. Their definitions are listed in section 2.6.3.

The privacy property is affected because partial results are computed before
the election is closed. That means votes submitted after a partial result has
been extracted might be influenced based on the knowledge of the result. Even
though results are not publicly released, trustees and election officials do know
the outcome of each partial result, which is enough. The more partial results
are computed, the more election privacy is affected.

The anonymity property is affected as ballots are anonymous in regards to how
many are mixed together, which happens during each extraction. The most
anonymity is reached when all ballots are mixed together (i.e., there is a single
result extraction at the end of the election phase). However, anonymity is still
bound by the number of ballots in the mix. For example, assuming there is only
one result extraction at the end of the election, but there are only two ballots in
the ballot box, and both contain a vote for the same candidate, the anonymity
is reduced to nothing, as both ballots are identifiable.

For that reason, it is essential to allow result extractions to happen only on a
list with a substantial amount of ballots. Therefore we introduce the extraction
threshold te as a configuration value.

C.2.4 Analysis on extraction threshold

As discussed in the previous section, the strength of the anonymity property is
related to how many ballots are mixed together and how identifiable a ballot
could be. In this section, we describe how a ballot could be identified and give
recommendations for the extraction threshold te for a reasonable anonymity
level. We consider three scenarios that could lead to a ballot being identifiable.
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The analysis is also based on how many unique vote options exist on a particular
ballot. For example, in a referendum, there are two vote options (i.e., any valid
vote can be either a ’yes/for’ or a ’no/against’). In a candidate election, there
are as many vote options as there are candidates. In multiple-choice and ranked
elections, the amount of unique vote options is a combination of the amount
of allowed choices from the number of candidates. We consider a ballot that
allows a write-in vote to have an infinite amount of vote options. Therefore, we
exclude it from the analysis. The analysis assumes that each vote option has an
equal probability of appearing (i.e., voters vote randomly).

All ballots are identical is the scenario where we consider all voters voting
on the same option. By doing so, anonymity is broken as it is visible that each
voter voted for that option. The probability of this scenario happening is(

1

x

)n
where x is the number of vote options, and n is the number of ballots. As this
vulnerability is critical because it would affect all voters included in that result,
it is recommended that the chance of this scenario to happen to be maximum
one in a million (i.e., the probability should be lower than 0.0001%).

Voting options Amount of ballots Scenario probability

2 20 0.00009%

5 9 0.00005%

10 6 0.00010%

100 3 0.00010%

1000 2 0.00010%

One unique ballot is the scenario where a voter submits a ballot uniquely
identifiable/distinguishable from the other ballots. We see this scenario as a
malicious intent of the voter to bypass the receipt freeness property of the sys-
tem, such that the voter can identify the ballot after it has been mixed and
decrypted. This kind of attack is also known as the Sicilian attack.

A ballot that supports write-in votes specifically introduces this vulnerability,
as a voter could use the write-in vote as a marking mechanism for the ballot.
Therefore, the following analysis covers only ballots without write-in possibili-
ties.

The probability of this scenario happening is(
x− 1

x

)n−1
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where x is the number of vote options, and n is the number of ballots. As this
vulnerability would affect one single ballot in case of successful performance, it
is recommended that the probability of this scenario to happen to be lower than
1%.

Voting options Amount of ballots Scenario probability

2 8 0.78%

5 22 0.92%

10 45 0.97%

100 460 0.99%

1000 4600 1.00%

All ballots are unique is the extreme scenario where all ballots included in
an extraction are distinctly identifiable. This scenario can happen only if the
amount of extracted ballots is less than the number of voting options. Assum-
ing recommendations from the previous scenario are met, this scenario is also
protected against.

Considering all scenarios described above, we conclude that the extraction
threshold te is dependent on the amount of unique vote options of a ballot,
therefore, it should be configurable. Nevertheless, we recommend te ≥ 300.

C.2.5 Multiple voting anomaly

The multiple result extractions feature is incompatible with the feature of over-
writing your vote. After an extraction has happened and a partial result has
been computed, voters that have ballots included in that result are not allowed
to cast a vote any longer. This measure prevents double voting.
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