’A ASSEMBLY VOTING

Assembly Voting Election Software

The election system was designed with a focus on security and verifiability. All cryptographic
algorithms are inspired from academic papers carefully bonded together to form our protocol.
Citations to academic articles are provided for an in-depth understanding of the algorithms.

The design of the system is modular, which makes it very easy to configure in order to reach the
desired properties of your election. Also, in case an updated algorithm is developed, it is very easy
to replace a particular module with an updated version.

The current document is structured in the following way. First, we describe the functionality of each
component that makes up the election system. Next, we present the election process including all
different phases and different roles that are involved in the process. In the third chapter, we state
what security properties the system achieves. We explain how these properties are achieved and
what components are responsible for each property.

Cryptographic components
Cryptosystem

We are using a fast and secure cryptosystem based on elliptic curve cryptography. We support the
following standard elliptic curves: P-256, P-384, P-521. Our encryption mechanism is based on the
very popular algorithm called ElIGamal encryption scheme that entails the use of a private-public
key infrastructure.

All voter choices are encrypted and sent over the network to the election server with no possibility
of eavesdropping. We will refer to an encryption of a choice as a ballot.

’A ASSEMBLY VOTING

Protect democracy. Prove integrity.

’4 ASSEMBLY VOTING

Threshold decryption

To defend against a single point of failure, the ballot decryption key of the election is split into
several parts, each in possession of different people or trusted systems, which we will refer to as
trustees. In order to decrypt the result of the election, a certain threshold of trustees have to
participate, otherwise decryption is not possible. This brings us two benefits:

e |n case a trustee loses its share of the decryption key, the results could still be decrypted
as long as the threshold of trustees can be met.

e |n case of a corrupt trustee, results cannot be manipulated as long as a threshold of
trustees are honest.

The election system uses an “t-out-of-n” threshold decryption system presented in the academic
paper “A Threshold Cryptosystem without a Trusted Party” written by professor Torben Pryds
Pedersen at the Aarhus University in Denmark [1]. The paper is based on other academic articles
that explain the mathematical principles of the threshold cryptosystem [2] [3]. The system needs at
least t trustees to collaborate out of all n in order to decrypt the results (e.g. 3 out of 5 trustees).
Parameters are fully configurable, but it is recommended that the threshold is at least a third of the
total number of trustees.

Before election starts, all trustees participate in a threshold ceremony where they exchange
cryptographic data used for generating the election encryption key. During this process, each of
them computes their own share of the decryption key that must be used to decrypt the result of the
election. All actions taken by trustees come with proofs and can be publicly verified that are
correctly computed.

Note that during this ceremony, nobody is able to compute the entire decryption key associated

with the ballot encryption key. This means that nobody has the power to decrypt results alone. All
mathematical procedures that trustees have to follow are described in the academic paper.

An overview of the threshold ceremony can be seen in the picture below.

Database

Set the Compute
decryption | | [[eeeeeeeieenrieniinnnean election
encryption key

threshold value —

Generate
trustee spots
and distribute
takens over
email

Server

end
process
when enough IO when all trustees

trustees have H have validated their
signed up o : secret share

Threshold Ceremony

Y - A A : when all trustees

have published
& & " coefficients and -
Generate private- e Generate partial partial secrets | Compute secret
Sign up public key pair polynomial secrets | > share and

coefficients validate

Trustee

’A ASSEMBLY VOTING

All trustees have to securely store their share of the decryption key until results can be decrypted.

During the decryption phase, trustees have to compute a partial decryption of the entire ballot
board using their share of the decryption key and generate a proof of correct computation. Each
trustee publishes her partial decryption and proof to the election server, which will accept it if the
proof validates. Note that the validation is publicly accessible.

The proof of a partial decryption consists of a list of Discrete Logarithm Equality Zero-Knowledge
Proofs, one for each cryptogram from the ballot board. An optimization of this has been
implemented as described in the paper “Zero-Knowledge Argument for Simultaneous Discrete
Logarithms” published by professor Shermann Chow et al. at the Courant Institute of Mathematical
Science New York University in USA [4].

When enough partial decryptions have been received (threshold limit was reached), the election
server can aggregate all partial decryptions in order to extract the results of the election. Again, the
mathematical procedures are explained in the academic paper [1].

The overview of the threshold decryption can be seen in the diagram below.

Accept partial
decryption

if yes

when enough
trustees have
decrypted

Aggregate all
artial

decryptions and

compute result

Check if
decryption proaf
validates

Server

Find ballot board
not decrypted
yet by trustee

end
Disregard partial process
[y decryption

Threshold Decryption

., partial

*| decryption,

decryption
proof

full board of |
encrypted
votes

Y

nload th Compute partial
e gecryption and
decryption proof

Trustee

Ask server for a
ballot board to
decrypt
t

star
process

’4 ASSEMBLY VOTING

Voter Credentials distribution

Voters receive their credentials via one or multiple channels from different Credential Authorities
that work independently from our system. Each Credential Authority should optimally use a distinct
communication channel for distributing credentials (sending letters, e-mail, SMS).

Voter credentials are generated randomly as a private-public key pair. The voter receives the
private keys which, combined together, will be used as a signing key, while our server receives the
associated public keys, which will be used as a signature verification key. It is very important that
our server never comes into possession of voters’ signing keys because it must not be able to
replicate a voter’s digital signature. When authenticating to the election system, a voter has to
input all credentials received from all Credential Authorities.

In case there is only one Credential Authority, it is obvious that it knows all credentials of all voters
and it might, potentially, launch a large-scale attack impersonating every voter. To avoid such a
single point of failure scenario, we recommend having multiple Credential Authorities to generate
voter credentials, using distinct communication channels for distributing them. In this case, a
large-scale attack is infeasible as long as there is at least one honest Credential Authority.

Digital Signature

To preserve the integrity of a vote, each cryptogram is accompanied by a digital signature that
certifies that the value of the cryptogram is genuine and can never be modified. Moreover, a digital
signature certifies the correlation between a voter and her ballot.

A digital signature is generated using the Schnorr Signature Algorithm described in the academic
paper “Efficient identification and signatures for smart cards” written by professor Claus-Peter
Schnorr [5]. Voter’s credentials are used as a signing key in the signing algorithm.

Once the cryptogram is published next to its signature, it is impossible to change the value of the
cryptogram because doing so will invalidate the signature, thus mitigating the possibility of a
misbehaving server.

Vote Confirmation

After the voter submits her vote (in form of a cryptogram), the server will send back a confirmation
(receipt) that her vote has been received in the form of a signature on the vote information. One
might say it is similar to the Digital Signature protocol, but this time it is the server who signs and
confirms the arrival of the vote. Based on the receipt, the voter will be able to check that the vote is
included in the public bulletin board.

Please note that this receipt proves only the fact that the voter has voted. It does not prove the way
she voted. Thus, the vote confirmation protocol does not violate the receipt-free property of the
election that says that the voter should not be able to prove to a third party the way she voted.

’4 ASSEMBLY VOTING

Public Bulletin Board

During the voting phase, all ballots are published on an append-only list, called the public bulletin
board. All voters have access to this list in order to verify that their ballot has been registered as
cast.

When a new ballot arrives on the bulletin board, a new hash value is associated with the new state
of the board. The value is computed by applying a hash function on the information of the new
ballot appended to the hash value of the previous state (before the new ballot was registered).

Each voter has the possibility of validating whether her vote is included on the board or not, using
her vote confirmation received from the server. The system will point the voter to her particular
vote from the board and she can validate that no data has been tampered with. Note that during
this process, the voter validates both that her vote is included and that the integrity of the entire
board has been maintained.

In case the hash value of the vote confirmation does not match the hash value of the vote from the
bulletin board, it represents an attack to the integrity of the bulletin board (a vote has been
removed or replaced). Thus, an inside attack to the integrity of the board can be easily intercepted.

Encryption Protocol

Instead of the voter encrypting her vote by herself, we use a scheme where the voter and the
election server collaborate in order to generate a cryptogram. The process starts by the server
delivering an empty cryptogram to the voter. The latter will encrypt her vote on top of the empty
cryptogram received. In this context, the randomness used in the generation of the final
cryptogram is shared between the voter and the election server with no single party knowing the
entire value.

If the voter tries to convince a third party about the way she voted, she can prove her vote based
on the initial cryptogram received, but she cannot prove that the cryptogram is empty. Hence, the
protocol is receipt-free.

By default, the voting application will hide the randomness used in the encryption so a regular
voter cannot prove the way she voted. Nevertheless, a malicious voter with enough hacking skills
could trick the voting application into revealing this sensitive information.

Though, by following our encryption protocol, a malicious voter could still not prove the way he
voted because part of the encryption was generated on the election server. Our system is
receipt-free as long as the attacker is not in control of both the voting application and the election
server.

If the voter wants to check that the cryptogram received from the server is indeed empty, then she
can check that by following the “Spoiling ballot feature”, where the server has to release its
randomizer, but only after the cryptogram has been marked as spoiled.

’A ASSEMBLY VOTING

Mixnet

To preserve anonymity, the link between a voter identity and his ballot has to be broken. In our
election system, we achieve that by passing the entire ballot board though a mixnet, formed of
several mix nodes. Each mix node applies a re-encryption algorithm on each cryptogram from the
board and shuffles them in a new random order to form the new version of the ballot board. In
addition, a proof of Correct Shuffle is generated to validate the correct re-encryptions of the
original ballots.

The proof is based on the academic paper called “A verifiable secret shuffle of homomorphic
encryptions” published by researcher Jens Groth [6]. All cryptographic procedures involved in the
generation and verification of the proof are described in the paper.

Mix nodes apply their mixing procedure in sequential order, meaning that each mix node mixes the
ballot board that the previous mix node has outputted. The first mix node mixes the initial, original
ballot board. The final version of the ballot board is the one that the last mix node computes.

In case one proof of shuffle is invalid, that mix node is removed and the process resumes from the
previous valid result.

All mix nodes are responsible for safely storing their mixing parameters used in the generation of

the board. In the case of a corrupt mix node that publishes his mixing parameters, our system still
preserves anonymity as long as there exists at least one honest mix node.

An overview of the mixing process can be seen in the picture below.

Accept the
mixed board as
the new version

of the ballot
board

Find available
ballot board and
mark it as
"under mixing
process”

Database
: ' A ffno Disregard the

E mixed board
[—]

if yes

Check if mixing
proof validates

Server

end
process

Database

Mark ballot
board as
available again

Mixing Process

*s Imixed board of|
| vates, mixing

full board of |
votes pro aof

Mix node

A A

Download the Generate the
latest version of mixed board and
the board mixing proof

Asl server for a

ballot board that

is ready to mix
start

process

’4 ASSEMBLY VOTING

Spoiling Ballot feature

After encrypting her vote (generating her ballot), the voter has the choice either to commit to her
ballot and register it on the ballot board or to challenge the encryption mechanism and verify what
the ballot actually encrypts (spoil the ballot).

When spoiling a ballot, the voter will mark the ballot as spoiled and optimally use a second
verification device to perform all the cryptographic calculations needed to check the correctness of
the ballot. Both the voting application and the server reveal to the verification device, in a secure
and private manner, their randomizers used for encrypting the ballot. The verification device uses
these randomizers to unpack the voter’s ballot and present to the voter her vote in plain text. If the
content of the ballot does not correspond with her choice, her voting device might be
compromised, as an attacker might trick the voting application to encrypt different values or the
server might be misbehaving. Otherwise, the voter gains confidence that the voting system outputs
genuine ballots.

The second device, used for verification, can be a mobile phone with the ballot spoiling app
installed that is able to perform basic cryptographic operations.

Because it has been decrypted, the spoiled ballot cannot be used anymore so the voter has to
re-vote. This process can be repeated as many times as needed, until the voter gains enough
confidence in her voting device.

If committing to a ballot, the election system will register it on the ballot board and the voting
application will erase the random number used in the encryption. The voting process is finished.

One might say that a malware can be programmed to interfere with the voting application only on

its second or third try, but there is no certainty on how many times each voter may try to spoil her
ballot. This way, we argue that an attack on the voting device will get caught with high probability.

Election Process

The overview of the entire election process is available in the diagram below. Descriptions for each
step follow afterwards.

’4 ASSEMBLY VOTING

Pre-Election Phase Voting Phase Mixing Phase Decryption Phase

For each mixer For at least a threshold of

Ballot definition Voting Process
trustees

Mixer generates Trustee applies

mixed board partial decryption

Vater Importer Optional actions of a voter

Server validates
decryption proof

Server validates
mixing proof

Ballot Spoiling

Election

Configuration

Checking Ballot
Board

Aggregate all partial

Threshold Ceremony decryptions

Release results

Pre-election phase:

e The election system has to be provided with a list of eligible voters. Each voter must have
valid contact information for each communication channel of the Credential Authorities. The
election administrator is fully responsible for providing an accurate voter list and valid
contact addresses.

e The Credential Authorities generate voter credentials and distribute them over particular
communication channels. They also submit voters' signature verification keys to the
election system.

e The election trustees (Persons or systems) have to participate in the threshold ceremony in
order to generate the election encryption key. Each trustee is responsible for securely
storing their share of the election decryption key.

Voting phase:

e The voter has to login to the system, using credentials received by distributing
authority(ies).

e The voter selects her choice and confirms it.

e The voter is presented with an identifier of her encrypted ballot in a readable form (Hex /
Base64 string).

e [f spoiling ballot feature enabled:

o The voter has the option to verify that the encrypted ballot contains the actual
selected choice.

o The voter has to introduce the identifier of the encrypted ballot in the verification
device, which will output a second pairing code. The voter has to confirm on the
voting device that the pairing code matches. This process is similar to bluetooth
pairing devices.

o Then, the verification device will be able to access all the information necessary to
unpack the voter’s ballot and present the vote choices to the voter.

o This process will invalidate the ballot, as it was decrypted, and the voter will be
asked to vote again.

’A ASSEMBLY VOTING

0 The voter can repeat this process as many times as needed until she gains
confidence that her choice is encrypted correctly (the vote is cast as intended).
o In case the ballot decrypts to a different value than expected, this shows a sign of
attack to the client application.
The voter generates a digital signature on her ballot.
The voter submits her encrypted ballot and the signature to the central server.
The voter receives and saves the confirmation that her vote has been registered.
The voter can check the public bulletin board and that it contains her encrypted ballot (by
typing the value of the encrypted ballot or by uploading the confirmation receipt). This way,
the voter gains confidence that her vote is registered as cast.
e The voter is able to register more ballots, during the voting process, out of which only the
last one will count. The previous ballots become overwritten.

The overview picture of the voting process is available below.

After voting:

e All the invalid and overwritten ballots are removed, and the bulletin board is sealed. This
contains all votes that should be counted.
e Mixing phase

o The bulletin board passes through the mixing phase that will shuffle the order of the
ballots in an indistinguishable way. The entire mixing phase is split amongst multiple
mix nodes that apply their shuffle sequentially. Each mix node provides a
mathematical proof that certifies that no content of that ballots has been tampered
with.

0 Any observer is able to verify these proofs and gain confidence that no content of
the bulletin board was altered in the mixing process.

o After the mixing phase, the piece of information regarding the connection between
an identity and its ballot is shared amongst all mix nodes. They are responsible for
securely storing their shuffle configuration.

e Decryption phase

o The ballot board outputted by the last mix node is the ballot board version to be

decrypted.

’4 ASSEMBLY VOTING

o A threshold of trustees has to participate in the decryption phase. Each of them is
computing a partial decryption of the bulletin board together with a mathematical
proof of correct computation.

o All partial decryptions together with their proofs are made public so any observer is
able to verify the correctness of the process.

o When enough partial decryptions have been submitted, the content of the ballots
can be extracted from the bulletin board by aggregating all partial decryptions. This
aggregation process is publicly computable, thus accessible to an observer.

Results:

e After the raw result has been published (list of all votes), the final result has to be
computed, according to the election type (referendum, simple election or eg. STV), and the
winner has to be announced.

Properties

Individual Verifiability

The voter can see and save the encrypted ballot generated on her computer. If the ballot is
registered, the voter is given a receipt that confirms that her vote has been received. She can,
further on, check that it was correctly registered on the server by verifying that her encrypted ballot
exists on the bulletin board.

If the spoiling ballot feature is enabled, the voter can check that her client application behaves
correctly. After the voter selects her choice and the encrypted ballot has been generated, the voter
is given the option to cast the ballot or to spoil it.

If spoilt, the client application will interact with a second verification application that will perform all
the cryptographic operations on behalf of the voter. The voter can use a second device to decrypt
the content of the ballot and verify that it corresponds to her choice. Having been decrypted, the
ballot cannot be used anymore, so the voter has to cast another vote.

Each voter is recommended to use this feature, at least once, as a verification mechanism of their
own system (computer).

Universal Verifiability

During the voting phase, observers constantly monitor the content of the public bulletin board. At
the end of the voting phase, all observers have to confirm the integrity of the board before it can
move further to the mixing phase.

’4 ASSEMBLY VOTING

After the ballot board has been cleaned and sealed (end of voting phase), all cryptographic
operations applied on the set of ballots are publicly verifiable. Both mixing proofs and decryption
proofs are published, and observers are allowed to verify.

While the individual verifiability is optional, the universal verifiability is mandatory. All mixing and
decryption proofs have to be validated by the server to be included in the process.

During the mixing phase, validation of a proof is needed after each mix node before the process
can continue with the next mix node. On the other hand, in the decryption phase, all partial
decryption proofs can be checked at the same time, so all trustees can perform the decryption
process simultaneously.

Eligibility Verifiability

Each ballot that arrives at the server is accompanied by a digital signature generated by its voter.
All ballots are published on the public bulletin board together with their signatures. Any observer
will be able to validate any digital signature associated to an eligible voter identity.

Moreover, each valid digital signature certifies the integrity of the vote because any tampering with
a vote on the bulletin board will result in invalidating its digital signature.

Vote Secrecy

The secrecy of the ballots is enforced by ElGamal encryption. The threshold decryption scheme
prevents anybody from reading a partial result before the decryption phase. Note that even the
election server is not able to compute any results ahead of time.

On the other hand, the voting device learns the voter’s choice. It is the voter's responsibility to
have a clean and secure environment with respect to malware, keyloggers etc.

Anonymity

Anonymity is provided by breaking the connection between a voter and her vote. This connection,
as a piece of information, is split during the mixing phase into several pieces, one for each mix
node. If all mix nodes put their pieces together, the connection between all voters and their votes
can be reconstructed, but as long as at least one mix node keeps his piece of information secret,
the anonymity of the ballot board is preserved.

Analytics and Auditing

All kinds of analytics can be performed as the ballot board is publicly available.

On the other hand, auditing particular ballots works exactly against the anonymity property of our
election system. In principle, auditing can be performed but it requires cooperation of all mix
nodes. This process should be allowed only to certified scrutineers.

’A ASSEMBLY VOTING

Tamper Detection

Tamper detection happens on two levels:

e Server side: Because of voters constantly checking their vote confirmations, tampering
(deleting or modifying) with the ballot board is immediately detectable.

e Voter side: Tampering with the voting application is detectable through ballot spoiling
process.

Coercion resistance

The election system provides coercion resistance to a certain extent. If the receipt-free feature is
enabled, a voter is not able to provide evidence on the way she voted to a third party e.g. a
coercer. Vote copying is mitigated as well because the voter is not performing the encryption of her
choice by herself (election server is involved in the encryption process).

Our system is coercion resistant as long as:

e the coercer does not sit next to the voter and see the voting process
e the coercer does not control the election server

Receipt freeness

Following our encryption protocol, the voter cannot prove to a third party what the content of her
ballot is. Because the election server participates in the encryption process (by submitting an
empty cryptogram), the voter has to output the following proofs for convincing a third party about
her vote:

e proof of her encryption
e proof that initial cryptogram received from server is empty
The first one is trivial. The second one is infeasible as the voter would have to break the Elliptic

Curve Discrete Logarithm Problem, which we consider hard.

’A ASSEMBLY VOTING
Bibliography

[1] T. P. Pedersen, A Threshold Cryptosystem without a Trusted Party, Aarhus: EUROCRYPT '91.

[2] Y. Desmedt and Y. Frankel, Threshold cryptosystem, Milwaukee: EE & CS Department
University of Wiscounsin-Milwaukee, 1990.

[3] A. Shamir, How to Share a Secret, Massachusetts Institute of Technology, 1979.

[4] S. Chow, C. Ma and J. Weng, Zero-Knowledge Argument for Simultaneous Discrete
Logarithms, New York: COCOON 2010.

[5] C.-P. Schnorr, Efficient identification and signatures for smart cards, New York: CRYPTO
89, 1989.

[6] J. Groth, A verifiable secret shuffle of homomorphic encryptions, IACR Cryptol. ePrint
Arch., 2005.

